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3.1 Introduction 

Software-Defined Networking (SDN) is an idea which has recently reignited the 

interest of network researchers for programmable networks and shifted the attention 

of the networking community to this topic by promising to make the process of 

designing and managing networks more innovative and simplified compared to the 

well-established but inflexible current approach.  

Designing and managing computer networks can become a very daunting task due 

to the high level of complexity involved. The tight coupling between a network's 

control plane (where the decisions of handling traffic are made) and data plane (where 

the actual forwarding of traffic takes place) give rise to various challenges related to 

its management and evolution. Network operators need to manually transform high-

level policies into low-level configuration commands, a process which for complex 

networks can be really challenging and error-prone. Introducing new functionality to 

the network, like intrusion-detection systems and load balancers usually requires 

tampering with the network’s infrastructure and has a direct impact on its logic, while 

deploying new protocols can be a slow process demanding years of standardization 

and testing to ensure interoperability among the implementations provided by various 

vendors.  

The idea of programmable networks has been proposed as a means to remedy this 

situation by promoting innovation in network management and the deployment of 

network services through programmability of the underlying network entities using 

some sort of an open network API. This leads to flexible networks able to operate 

according to the user’s needs in a direct analogy to how programming languages are 



being used to reprogram computers in order to perform a number of tasks without the 

need for continuous modification of the underlying hardware platform. 

SDN is a relatively new paradigm of a programmable network which changes the 

way that networks are designed and managed by introducing an abstraction that 

decouples the control from the data plane, as illustrated in Figure 3.1. In this approach 

a software control program, referred to as the controller, has an overview of the whole 

network and is responsible for the decision making, while the hardware (routers, 

switches etc.) is simply responsible for forwarding packets into their destination as 

per the controller’s instructions, typically a set of packet-handling rules.  

 

 

Figure 3.1 SDN in a nutshell - key ideas underlying the SDN paradigm 

 

The separation of the logically centralized control from the underlying data plane 

has quickly become the focus of vivid research interest in the networking community 

since it greatly simplifies network management and evolution in a number of ways. 

New protocols and applications can be tested and deployed over the network without 

affecting unrelated network traffic; additional infrastructure can be introduced without 

much hassle; and middleboxes can be easily integrated into the software control, 



allowing new potential solutions to be proposed for problems that have long been in 

the spotlight, like managing the highly complex core of cellular networks. 

This chapter is a general overview of SDN for readers who have just been exposed 

to the SDN paradigm as well as for those requiring a survey of its past, present and 

future. Through the discussion and the examples presented in this chapter the reader 

should be able to comprehend why and how SDN shifts paradigms with respect to the 

design and management of networks and to understand the potential benefits that it 

has to offer to a number of interested parties like network operators and researchers. 

The chapter begins by presenting a comprehensive history of programmable 

networks and their evolution to what we nowadays call SDN. Although the SDN hype 

is fairly recent, many of its underlying ideas are not new and have simply evolved 

over the past decades. Therefore, reviewing the history of programmable networks 

will provide to the reader a better understanding of the motivations and alternative 

solutions proposed over time, which helped to shape the modern SDN approach. 

The next part of this chapter focuses on the building blocks of SDN, discussing 

the concept of the controller and giving an overview of the state of the art by 

presenting different design and implementation approaches. It also clarifies how the 

communication of the data and control plane could be achieved through a well-

defined API by giving an overview of various emerging SDN programming 

languages. Moreover, it attempts to highlight the differences of SDN to other related 

but distinct technologies like network virtualization. Additionally, some 

representative examples of existing SDN applications are discussed, allowing the 

reader to appraise the benefits of exploiting SDN to create powerful applications. 

The final part of the chapter discusses the impact of SDN to both the industry and 

the academic community by presenting the various working groups and research 

communities that have been formed over time describing their motivations and goals. 

This in turn demonstrates where the current research interest concentrates, which 

SDN-related ideas have been met with widespread acceptance and what are the trends 

that will potentially drive future research in this field. 

 

3.2 SDN History and Evolution 

While the term programmable is used to generalize the concept of the simplified 

network management and reconfiguration, it is important to understand that in reality 



it encapsulates a wide number of ideas proposed over time, each having a different 

focus (e.g., control- or data-plane programmability) and different means of achieving 

their goals. This section reviews the history of programmable networks right from its 

early stages, when the need for network programmability first emerged, up to the 

present with the dominant paradigm of SDN. Along these lines, the key ideas that 

formed SDN will be discussed along with other alternatives that were proposed and 

affected SDN's evolution but which were not met with the same widespread success.  

 

3.2.1 Early History of Programmable Networks 
 
As already mentioned, the concept of programmable networks dates its origins 

back in the mid-90s, right when the Internet was starting to experience widespread 

success. Until that moment the usage of computer networks was limited to a small 

number of services like e-mail and file transfers. The fast growth of the Internet 

outside of research facilities led to the formation of large networks, turning the 

interest of researchers and developers in deploying and experimenting with new ideas 

for network services. However, it quickly became apparent that a major obstacle 

towards this direction was the high complexity of managing the network 

infrastructure. Network devices were used as black boxes designed to support specific 

protocols essential for the operation of the network, without even guaranteeing vendor 

interoperability. Therefore, modifying the control logic of such devices was not an 

option, severely restricting network evolution. To remedy this situation, various 

efforts focused on finding novel solutions for creating more open, extensible and 

programmable networks. 

Two of the most significant early ideas proposing ways of separating the control 

software from the underlying hardware and providing open interfaces for management 

and control were of the Open Signaling (OpenSig) [2] working group and from the 

Active Networking [3] initiative.  

OpenSig - The Open Signaling working group appeared in 1995 and focused on 

applying the concept of programmability in ATM networks. The main idea was the 

separation of the control and data plane of networks, with the signaling between the 

planes performed through an open interface. As a result, it would be possible to 

control and program ATM switches remotely, essentially turning the whole network 

into a distributed platform, greatly simplifying the process of deploying new services.  



The ideas advocated by the OpenSig community for open signaling interfaces 

acted as motivation for further research. Towards this direction, the Tempest 

framework [4], based on the OpenSig philosophy, allowed multiple switch controllers 

to manage multiple partitions of the switch simultaneously and consequently to run 

multiple control architectures over the same physical ATM network. This approach 

gave more freedom to network operators, as they were no longer forced to define a 

single unified control architecture satisfying the control requirements of all future 

network services. 

Another project aimed at designing the necessary infrastructure for the control of 

ATM networks was DCAN [5] (Devolved Control of ATM networks). The main idea 

was that the control and management functions of the ATM network switches should 

be stripped from the devices and should be assigned to external dedicated 

workstations. DCAN presumed that the control and management operations of multi-

service networks were inherently distributed, due to the need of allocating resources 

across a network path in order to provide QoS guarantees. The communication 

between the management entity and the network was performed using a minimalistic 

protocol, much like what modern SDN protocols like OpenFlow do, adding any 

additional management functionality like the synchronization of streams in the 

management domain. The DCAN project was officially concluded in mid-1998.  

Active Networking - The Active Networking initiative appeared in the mid-90s 

and was mainly supported by DARPA [6][7]. Like OpenSig, its main goal was the 

creation of programmable networks which would promote network innovations. The 

main idea behind active networking is that resources of network nodes are exposed 

through a network API, allowing network operators to actively control the nodes as 

they desire by executing arbitrary code. Therefore, contrary to the static functionality 

offered by OpenSig networks, active networking allowed the rapid deployment of 

customized services and the dynamic configuration of networks at run-time.  

The general architecture of active networks defines a three-layer stack on active 

nodes. At the bottom layer sits an operating system (NodeOS) multiplexing the node’s 

communication, memory and computational resources among the packet flows 

traversing the node. Various projects proposing different implementations of the 

NodeOS exist, with some prominent examples being the NodeOS project [8] and 

Bowman [9]. At the next layer exist one or more execution environments providing a 

model for writing active networking applications, including ANTS [10] and PLAN 



[11]. Finally, at the top layer are the active applications themselves, i.e. the code 

developed by network operators. 

Two programming models fall within the work of the active networking 

community [7][12]; the capsule model, in which the code to be executed is included 

in regular data packets; and the programmable router/switch model, in which the code 

to be executed at network nodes is established through out-of-band mechanisms. Out 

of the two, the capsule model came to be the most innovative and most closely 

associated with active networking [7]. The reason is that it offered a radically 

different approach to network management, providing a simple method of installing 

new data plane functionality across network paths. However, both models had a 

significant impact and left an important legacy, since many of the concepts met in 

SDN (separation of the control and data plane, network APIs etc.) come directly from 

the efforts of the active networking community. 

 

3.2.2 Evolution of Programmable Networks to SDN 
 

3.2.2.1 Shortcomings and contributions of previous approaches 

 

Although the key concepts expressed by these early approaches envisioned 

programmable networks that would allow innovation and would create open 

networking environments, none of the proposed technologies was met with 

widespread success. One of the main reasons for this failure was the lack of 

compelling problems that these approaches managed to solve [6][7]. While the 

performance of various applications like content distribution and network 

management appeared to benefit from the idea of network programmability, there was 

no real pressing need that would turn the shift to the new paradigm into a necessity, 

leading to the commercialization of these early ideas. 

Another reason for which active networking and open signaling did not become 

mainstream was their focus on the wrong user group. Until then, the programmability 

of network devices could be performed only by programmers working for the vendors 

developing them. The new paradigm advocated as one of its advantages the flexibility 

it would give to end users to program the network, even though in reality the use case 

of end user programmers was really rare [7]. This clearly had a negative impact on the 

view that the research community and most importantly the industry had for 



programmable networks, as it overshadowed their strong points, understating their 

value for those that could really benefit like ISPs and network operators. 

Furthermore, the focus of many early programmable network approaches was in 

promoting data- instead of control-plane programmability. For instance active 

networking envisioned the exposure and manipulation of resources in network devices 

(packet queues, processing, storage etc.) through an open API but did not provide any 

abstraction for logical control. In addition, while one of the basic ideas behind 

programmable networks was the decoupling of the control from the data plane, most 

proposed solutions made no clear distinction between the two [6]. These two facts 

hindered any attempts for innovation in the control plane, which arguably presents 

more opportunities than the data plane for discovering compelling use cases. 

A final reason for the failure of early programmable networks was that they 

focused on proposing innovative architectures, programming models and platforms, 

paying little or no attention to practical issues like the performance and the security 

they offered [7]. While such features are not significant key concepts of network 

programmability, they are important factors when it comes to the point of 

commercializing this idea. Therefore, even though programmable networks had many 

theoretical advantages, the industry was not eager to adopt such solutions unless 

pressing performance and security issues were resolved. 

Clearly the aforementioned shortcomings of early programmable network 

attempts were the stumbling blocks to their widespread success. However, these 

attempts were really significant, since they defined for the first time key concepts that 

reformed the way that networks are perceived and identified new research areas of 

high potential. Even their shortcomings were of high significance, since they revealed 

many deficiencies that should be addressed if the new paradigm was to be successful 

one day. All in all, these early attempts were the cornerstones that shaped the way to 

the more promising and now widely accepted paradigm of SDN.  

 

3.2.2.2 Shift to the SDN paradigm 

 
The first years of the 2000s saw major changes in the field of networking. New 

technologies like ADSL emerged, providing high-speed Internet access to consumers. 

At that moment it was easier than ever before for an average consumer to afford an 

Internet connection which could be used for all sorts of activities, from e-mail and 



teleconference services to large file exchanges and multimedia. This mass adoption of 

high-speed Internet and of all the new services that accompanied it had cataclysmic 

effects for networks, which saw their size and scope increase along with traffic 

volumes. Industrial stakeholders like ISPs and network operators started emphasizing 

on network reliability, performance and quality of service and required better 

approaches in performing important network configuration and management functions 

like routing, which at the time were primitive at best. Additionally, new trends in the 

storage and management of information like the appearance of cloud computing and 

the creation of large data centers made apparent the need for virtualized 

environments, accompanied by network virtualization as a means to support their 

automated provisioning, automation and orchestration. 

All these problems constituted compelling use cases that programmable networks 

promised to solve and shifted the attention of the networking community and the 

industry to this topic once more. This shift was strengthened by the improvement of 

servers which became substantially better than the control processors in routers, 

simplifying the task of moving the control functions outside network devices [7]. A 

result of this technological shift was the emergence of new improved network 

programmability attempts, with the most prominent example being SDN.  

The main reason for the apparent success of SDN is that it managed to build on 

the strong points of early programmable network attempts, while at the same time 

succeeded in addressing their shortcomings. Naturally, this shift from early 

programmable networks to SDN did not occur at once, but, as we shall now see, went 

through a series of intermediate steps. 

As already mentioned one of the major drawbacks of early programmable 

networking attempts was the lack of a clear distinction between the control and data 

plane of network devices. The IETF ForCES [13] (Forwarding and Control Element 

Separation) working group tried to address this by redefining the internal architecture 

of network devices through the separation of the control from the data plane. In 

ForCES two logical entities could be distinguished; the Forwarding Element (FE) 

which operated in the data plane and was responsible for per-packet processing and 

handling and the Control Element (CE) which was responsible for the logic of 

network devices, i.e. for the implementation of management protocols, for control 

protocol processing etc. A standardized interconnection protocol lay between the two 

elements enforcing the forwarding behavior to the FE as directed by the CE. The idea 



behind ForCES was that by allowing the forwarding and control planes to evolve 

separately and by providing a standard means of interconnection it was possible to 

develop different types of FEs (general purpose or specialized) which could be 

combined with third-party control, allowing greater flexibility for innovation. 

Another approach targeting the clean separation of the control and forwarding 

elements of network devices was the 4D project [14]. Like ForCES, 4D emphasized 

the importance of separating the decision logic from the low-level network elements. 

However, in contrast to previous approaches, the 4D project envisioned an 

architecture based on four planes: a decision plane responsible for creating a network 

configuration; a dissemination plane responsible for delivering information related to 

the view of the network to the decision plane; a discovery plane allowing network 

devices to discover their immediate neighbors and a data plane responsible for 

forwarding traffic. One experimental system based on the 4D architecture was 

Tesseract [15], which enabled the direct control of a network under the constraint of a 

single administrative domain. The ideas expressed in the 4D project acted as direct 

inspiration for many projects related to the controller component of SDNs, since it 

gave the notion of a logically centralized control of the network.  

A final project worth mentioning during the pre-SDN era is SANE/Ethane 

[16][17]. Ethane was a joint attempt made in 2007 by researchers in the universities of 

Stanford and Berkeley to create a new network architecture for the enterprise. Ethane 

adopted the main ideas expressed in 4D for a centralized control architecture, 

expanding it to incorporate security. The researchers behind Ethane argued that 

security could be integrated to network management, as both require some sort of 

policy, the ability to observe network traffic and a means to control connectivity. 

Ethane achieved this by coupling very simple flow-based Ethernet switches with a 

centralized controller responsible for managing the admittance and routing of flows 

by communicating with the switches through a secure channel. A compelling feature 

of Ethane was that its flow-based switches could be incrementally deployed alongside 

conventional Ethernet switches and without any modification to end hosts required, 

allowing the widespread adoption of the architecture. Ethane was implemented in 

both software and hardware and was deployed at the campus of Stanford University 

for a period of a few months. The Ethane project was very significant, as the 

experiences gained by its design, implementation and deployment laid the foundation 

for what would soon thereafter become SDN. In particular, Ethane is considered the 



immediate predecessor of OpenFlow, since the simple flow-based switches it 

introduced formed the basis of the original OpenFlow API. 

 

3.2.2.3 The emergence of software defined networking 

 
In the second half of the 2000s, funding agencies and researchers started showing 

interest in the idea of network experimentation at scale [7]. This interest was mainly 

motivated by the need to deploy new protocols and services, targeting better 

performance and QoS in large enterprise networks and the Internet, and was further 

strengthened by the success of experimental infrastructures like Planetlab [18] and by 

the emergence of various initiatives like the US National Science Foundation’s GENI 

(Global Environment for Networking Innovations). Until then, large scale 

experimentation was not an easy task to perform; researchers were mostly limited in 

using simulation environments for evaluation, which, despite their value, could not 

always capture all the important network-related parameters in the same manner as a 

realistic testbed would. 

One important requirement of such infrastructure-based efforts was the need for 

network programmability, which would simplify network management and network 

services deployment and would allow multiple experiments to be run simultaneously 

at the same infrastructure, each using a different set of forwarding rules. Motivated by 

this idea a group of researchers at Stanford created the Clean Slate Program. In the 

context of this project, which had as a mission to “reinvent the Internet”, the 

OpenFlow protocol was proposed as a means for researchers to run experimental 

protocols in everyday networking environments. Similarly to previous approaches like 

ForCES, OpenFlow followed the principle of decoupling the control and forwarding 

plane, and standardized the information exchanges between the two using a simple 

communication protocol. The solution proposed by OpenFlow, which provided 

architectural support for programming the network, led to the creation of the term 

SDN to encapsulate all the networks following similar architectural principles. The 

fundamental idea behind SDNs compared to the conventional networking paradigm is 

the creation of horizontally integrated systems through the separation of the control 

and the data plane while providing an increasingly sophisticated set of abstractions.  

Looking back at all the milestones and important programmable network projects 

presented in this section we can conclude that the road to SDN was indeed a long one 



with various ideas being proposed, tested and evaluated, driving research in this field 

even further. SDN was not so much of a new idea, as it was the promising result of 

the distilled knowledge and experience obtained through many of the ideas presented 

in this section. What SDN managed to do differently compared to these ideas is that it 

integrated the most important network programmability concepts into an architecture 

that emerged at the right time and had compelling use cases for a great number of 

interested parties. Even though it remains to be seen whether SDN will be the next 

major paradigm shift in networking, the promise it demonstrates is undeniably very 

high. 

 

3.3 SDN Paradigm and Applications 

In this section we focus on the key ideas underlying the SDN paradigm, the most 

recent instance in the evolution of programmable networks. In order to better 

understand the SDN concepts and to comprehend the benefits that this paradigm 

promises to deliver we need to examine it both macro- and microscopically. For this, 

we begin this section by presenting a general overview of its architecture before going 

into an in-depth analysis of its building blocks. 

 

3.3.1 Overview of SDN Building Blocks 
 
As already mentioned, the SDN approach allows the management of network 

services through the abstraction of lower level functionality. Instead of dealing with 

low level details of network devices regarding the way that packets and flows are 

managed, network administrators now only need to use the abstractions available in 

the SDN architecture. The way that this is achieved is by decoupling the control plane 

from the data plane following the layered architecture illustrated in Figure 3.1. 

At the bottom layer we can observe the data plane, where the network 

infrastructure (switches, routers, wireless access points etc.) lies. In the context of 

SDN these devices have been stripped of all control logic (e.g., routing algorithms 

like BGP) simply implementing a set of forwarding operations for manipulating 

network data packets and flows, providing an abstract open interface for the 

communication with the upper layers. In the SDN terminology these devices are 

commonly referred to as network switches. 



Moving to the next layer we can observe the control plane, where an entity 

referred as the controller lies. This entity encapsulates the networking logic and is 

responsible for providing a programmatic interface to the network, which is used to 

implement new functionality and perform various management tasks. Unlike previous 

approaches like ForCES, the control plane of SDN is ripped entirely from the network 

device and is considered to be logically centralized, while physically it can be either 

centralized or decentralized residing in one or more servers, which control the 

network infrastructure as a whole.  

An important aspect which distinguishes SDN from previous programmable 

network attempts is that it has introduced the notion of the network operating system 

abstraction [19 ]. Recall that previous efforts like active networking proposed some 

sort of node operating system (e.g., NodeOS) for controlling the underlying hardware. 

A network operating system offers a more general abstraction of network state in 

switches, revealing a simplified interface for controlling the network. This abstraction 

assumes a logically centralized control model, in which the applications view the 

network as a single system. In other words, the network operating system acts as an 

intermediate layer responsible for maintaining a consistent view of network state, 

which is then exploited by control logic to provide various networking services for 

topological discovery, routing, management of mobility and statistics etc. 

At the top of the SDN stack lies the application layer, which includes all the 

applications that exploit the services provided by the controller in order to perform 

network-related tasks, like load balancing, network virtualization etc. One of the most 

important features of SDN is the openness it provides to third-party developers 

through the abstractions it defines for the easy development and deployment of new 

applications in various networked environments from data centers and WANs to 

wireless and cellular networks. Moreover, the SDN architecture eliminates the need 

for dedicated middleboxes like firewalls and Intrusion Detection Systems (IDS) in the 

network topology, as it is now possible for their functionality to be implemented in 

the form of software applications that monitor and modify the network state through 

the network operating system services. Obviously, the existence of this layer adds 

great value to SDN, since it gives rise to a wide range of opportunities for innovation, 

making SDN a compelling solution both for researchers and the industry. 

Finally, the communication of the controller to the data plane and the application 

layer can be achieved through well-defined interfaces (APIs). We can distinguish two 



main APIs in the SDN architecture: i) a southbound API for the communication 

between the controller and the network infrastructure; and ii) a northbound API 

defining an interface between the network applications and the controller. This is 

similar to the way communication is achieved among the hardware, the operating 

system and the user space in most computer systems. 

Having seen the general overview of the SDN architecture it is now time for an in-

depth discussion of each of the building blocks just presented. Some examples of 

SDN applications will be discussed in the next section. 

 

3.3.2 SDN Switches 
 
In the conventional networking paradigm the network infrastructure is considered 

the most integral part of the network. Each network device encapsulates all the 

functionality that would be required for the operation of the network. For instance, a 

router needs to provide the proper hardware like a Ternary Content Addressable 

Memory (TCAM) for quickly forwarding packets, as well as sophisticated software 

for executing distributed routing protocols like BGP. Similarly, a wireless access 

point needs to have the proper hardware for wireless connectivity as well as software 

for forwarding packets, enforcing access control etc. However, dynamically changing 

the behavior of network devices is not a trivial task due to their closed nature. 

The three-layered SDN architecture presented above changes this, by decoupling 

the control from the forwarding operations, simplifying the management of network 

devices. As already mentioned, all forwarding devices retain the hardware that is 

responsible for storing the forwarding tables (e.g., Application-specific integrated 

circuits - ASICs - with a TCAM), but are stripped of their logic. The controller 

dictates to the switches how packets should be forwarded by installing new 

forwarding rules through an abstract interface. Each time a packet arrives to a switch 

its forwarding table is consulted and the packet is forwarded accordingly.  

Even though in the above overview of SDN a clean three-layered architecture was 

presented, it remains unclear what the boundaries between the control and the data 

plane should be. For example, Active Queue Management (AQM) and scheduling 

configuration are operations that are still considered part of the data plane even in the 

case of SDN switches. However, there is no inherent problem preventing these 

functions from becoming part of the control plane by introducing some sort of 



abstraction allowing the control of low level behavior in switching devices. Such an 

approach could turn out to be beneficial, since it would simplify the deployment of 

new more efficient schemes for low level switch operations [20]. 

On the other hand, while moving all control operations to a logically centralized 

controller has the advantage of easier network management, it can also raise 

scalability issues if physical implementation of the controller is also centralized. 

Therefore, it might be beneficial to retain some of the logic in the switches. For 

instance in the case of DevoFlow [21], which is a modification of the OpenFlow 

model, the packet flows are distinguished into two categories: small (“mice”) flows 

handled directly by the switches and large (“elephant”) flows requiring the 

intervention of the controller. Similarly, in the DIFANE [22] controller intermediate 

switches are used for storing the necessary rules and the controller is relegated to the 

simple task of partitioning the rules over the switches. 

Another issue of SDN switches is that the forwarding rules used in the case of 

SDN are more complex than those of conventional networks, using wildcards for 

forwarding packets, considering multiple fields of the packet like source and 

destination addresses, ports, application etc. As a result the switching hardware cannot 

easily cope with the management of packets and flows. In order for the forwarding 

operation to be fast ASICs using TCAM are required. Unfortunately, such specialized 

hardware is expensive and power-consuming and as a result only a limited number of 

forwarding entries for flow-based forwarding schemes can be supported in each 

switch, hindering network scalability. A way to cope with this would be to introduce 

an assisting CPU to the switch or somewhere nearby to perform not only control plane 

but also data plane functionalities, e.g., let the CPU forward the “mice” flows [23] or 

to introduce new architectures which would be more expressive and would allow 

more actions related to packet processing to be performed [24].  

The issue of hardware limitations is not only restricted to fixed networks but is 

extended to the wireless and mobile domains as well. The wireless data plane needs to 

be redesigned in order to offer more useful abstractions similarly to what happened 

with the data plane of fixed networks. While the data plane abstractions offered by 

protocols like OpenFlow support the idea of decoupling the control from the data 

plane, they cannot be extended to the wireless and mobile field unless the underlying 

hardware (e.g., switches in backhaul cellular networks and wireless access points) 

starts providing equally sophisticated and useful abstractions [6]. 



Regardless of the way that SDN switches are implemented, it should be made 

clear that in order for the new paradigm to gain popularity, backwards compatibility is 

a very important factor. While pure SDN switches that completely lack integrated 

control exist, it is the hybrid approach (i.e. support of SDN along with traditional 

operation and protocols) that would probably be the most successful at these early 

steps of SDN [12]. The reason is that while the features of SDN present a compelling 

solution for many realistic scenarios, the infrastructure in most enterprise networks 

still follows the conventional approach. Therefore, an intermediate hybrid network 

form would probably ease the transition to SDN.  

 

3.3.3 SDN Controllers 
 
As already mentioned, one of the core ideas of the SDN philosophy is the 

existence of a network operating system placed between the network infrastructure 

and the application layer. This network operating system is responsible for 

coordinating and managing the resources of the whole network and for revealing an 

abstract unified view of all components to the applications executed on top of it. This 

idea is analogous to the one followed in a typical computer system, where the 

operating system lies between the hardware and the user space and is responsible for 

managing the hardware resources and providing common services for user programs. 

Similarly, network administrators and developers are now presented with a 

homogeneous environment easier to program and configure much like a typical 

computer program developer would. 

The logically centralized control and the generalized network abstraction it offers 

makes the SDN model applicable to a wider range of applications and heterogeneous 

network technologies compared to the conventional networking paradigm. For 

instance, consider a heterogeneous environment composed of a fixed and a wireless 

network comprised by a large number of related network devices (routers, switches, 

wireless access points, middleboxes etc.). In the traditional networking paradigm each 

network device would require individual low level configuration by the network 

administrator in order to operate properly. Moreover, since each device targets a 

different networking technology, it would have its own specific management and 

configuration requirements, meaning that extra effort would be required by the 

administrator to make the whole network operate as intended. On the other hand, with 



the logically centralized control of SDN, the administrator would not have to worry 

about low level details. Instead, the network management would be performed by 

defining a proper high level policy, leaving the network operating system responsible 

for communicating with and configuring the operation of network devices. 

Having discussed the general concepts behind the SDN controller, the following 

subsections take a closer look at specific design decisions and implementation choices 

made at this core component that can prove to be critical for the overall performance 

and scalability of the network. 

 

3.3.3.1 Centralization of control in SDN 

 
As already discussed, the SDN architecture specifies that the network 

infrastructure is logically controlled by a central entity responsible for management 

and policy enforcement. However, it should be made clear that logically centralized 

control does not necessarily also imply physical centralization. 

There have been various proposals for physically centralized controllers, like for 

instance NOX [19] and Maestro [25]. A physically centralized control design 

simplifies the controller implementation. All switches are controlled by the same 

physical entity, meaning that the network is not subject to consistency related issues, 

with all the applications seeing the same network state (which comes from the same 

controller). Despite its advantages, this approach suffers from the same weakness that 

all centralized systems do, i.e. the controller acts as a single point of failure for the 

whole network. A way to overcome this is by connecting multiple controllers to a 

switch, allowing a backup controller to take over in the event of a failure. In this case, 

all controllers need to have a consistent view of the network, otherwise applications 

might fail to operate properly. Moreover the centralized approach can raise scalability 

concerns, since all network devices need to be managed by the same entity. 

One approach that further generalizes the idea of using multiple controllers over 

the network is to maintain a logically centralized but physically decentralized control 

plane. In this case, each controller is responsible for managing only one part of the 

network, but all controllers communicate and maintain a common network view. 

Therefore, applications view the controller as a single entity, while in reality control 

operations are performed by a distributed system. The advantage of this approach, 

apart from not having a single point of failure anymore, is the increase in performance 



and scalability, since only a part of the network needs to be managed by each 

individual controller component. Some well-known controllers that belong to this 

category are Onix [26] and HyperFlow [27]. One potential downside of decentralized 

control is once more related to the consistency of the network state among controller 

components. Since the state of the network is distributed, it is possible that 

applications served by different controllers might have a different view of the 

network, which might make them operate improperly. 

A hybrid solution that tries to encompass both scalability and consistency is to use 

two layers of controllers like the Kandoo [28] controller does. The bottom layer is 

composed by a group of controllers which do not have knowledge of the whole 

network state. These controllers only run control operations which require knowing 

the state of a single switch (local information only). On the other hand the top layer is 

a logically centralized controller responsible for performing network-wide operations 

that require knowledge of the whole network state. The idea is that local operations 

can be performed faster this way and do not incur any additional load to the high-level 

central controller, effectively increasing the scalability of the network. 

Apart from the ideas related to the level of physical centralization of controllers, 

there have been other proposed solutions related to their logical decentralization. The 

idea of logical decentralization comes directly from the early era of programmable 

networks and from the Tempest project. Recall that the Tempest architecture allowed 

multiple virtual ATM networks to operate on top of the same set of physical switches. 

Similarly, there have been proposals for SDN proxy controllers like FlowVisor [29] 

which allow multiple controllers to share the same forwarding plane. The motivation 

for this idea was to enable the simultaneous deployment of experimental and 

enterprise networks over the same infrastructure without affecting one another. 

Before concluding our discussion on the degree of centralization with SDN 

controllers it is important to examine the concerns which can be raised regarding their 

performance and applicability over large networking environments. 

One of the most frequent concerns raised by SDN skeptics is the ability of SDN 

networks to scale and be responsive in cases of high network load. This concern 

comes mainly from the fact that in the new paradigm control moves out of network 

devices and goes in a single entity responsible for managing the whole network 

traffic. Motivated by this concern, performance studies of SDN controller 

implementations [30] have revealed that even physically centralized controllers can 



perform really well, having very low response times. For instance, it has been shown 

that even primitive single-threaded controllers like NOX can handle an average 

workload of up to 200 thousand new flows per second with a maximum latency of 

600ms for networks composed of up to 256 switches. Newer multi-threaded controller 

implementations have been shown to perform significantly better. For instance, NOX-

MT [31], can handle 1.6 million new flows per second in a 256-switch network with 

an average response time of 2ms in a commodity eight-core machine of 2GHz CPUs. 

Newer controller designs targeting large industrial servers promise to improve the 

performance even further. For instance the McNettle [32] controller claims to be able 

to serve networks of up to 5000 switches using a single controller of 46 cores with a 

throughput of over 14 million flows per second and latency under 10ms. 

Another important performance concern raised in the case of a physically 

decentralized control plane is the way that controllers are placed within the network, 

as the network performance can be greatly affected by the number and the physical 

location of controllers, as well as by the algorithms used for their coordination. In 

order to address this, various solutions have been proposed, from viewing the 

placement of controllers as an optimization problem [33] to establishing connections 

of this problem to the fields of local algorithms and distributed computing for 

developing efficient controller coordination protocols [34]. 

A final concern raised in the case of physically distributed SDN controllers is 

related to the consistency of the network state maintained at each controller when 

performing policy updates, due to concurrency issues that might occur by the error-

prone, distributed nature of the logical controller. The solutions of such a problem can 

be similar to those of transactional databases, with the controller being extended with 

a transactional interface defining semantics for either completely committing a policy 

update or aborting [35]. 

 

3.3.3.2 Management of traffic 

 
Another very important design issue of SDN controllers is related to the way that 

traffic is managed. The decisions about traffic management can have a direct impact 

on the performance of the network, especially in cases of large networks composed of 

many switches and with high traffic loads. We can divide the problems related to 

traffic management into two categories; control granularity and policy enforcement. 



 
Control granularity 

The control granularity applied over network traffic refers to how fine or coarse-

grained the controller inspection operations should be in relation to the packets 

traversing the network [12]. In conventional networks each packet arriving at a switch 

is examined individually and a routing decision is made as to where the packet should 

be forwarded depending on the information it carries (e.g. destination address). While 

this approach generally works for conventional networks, the same cannot be said for 

SDN. In this case the per-packet approach becomes infeasible to implement across 

any sizeable network, since all packets would have to pass through the controller 

which would need to construct a route for each one of them individually.  

Due to the performance issues raised by the per-packet approach most SDN 

controllers follow a flow based approach, where each packet is assigned to some flow 

according to a specific property (e.g. the packet’s source and destination address and 

the application it is related with). The controller sets up a new flow by examining the 

first packet arriving for that flow and configuring the switches accordingly. In order to 

further offload the controller, an extra coarse-grained approach would be to enforce 

control based on an aggregation flow-match instead of using individual flows.  

The main tradeoff when examining the level of granularity is the load in the 

controller versus the quality of service (QoS) offered to network applications. The 

more fine-grained the control, the higher the QoS. In the per-packet approach the 

controller can always make the best decisions for routing each individual packet, 

therefore leading to improved QoS. On the other end, enforcing control over an 

aggregation of flows means that the controller decisions for forwarding packets do not 

fully adapt to the state of the network. In this case packets might be forwarded 

through a suboptimal route, leading to degraded QoS. 

 
Policy enforcement 

The second issue in the management of traffic is related to the way that network 

policies are applied by the controller over network devices [12]. One approach, 

followed by systems like Ethane is to have a reactive control model, where the 

switching device consults the controller every time a decision for a new flow needs to 

be made. In this case, the policy for each flow is established to the switches only 

when an actual demand arises, making network management more flexible. A 



potential downside of this approach is the degradation of performance, due to the time 

required for the first packet of the flow to go to the controller for inspection. This 

performance drop could be significant, especially in cases of controllers which are 

physically located far away from the switch.  

An alternative policy enforcement approach would be to use a proactive control 

model. In this case the controller populates the flow tables ahead of time for any 

traffic that could go through the switches and then pushes the rules to all the switches 

of the network. Using this approach a switch no longer has to request directions by the 

controller to set up a new flow and instead can perform a simple lookup at the table 

already stored in the TCAM of the device. The advantage of proactive control is that 

it eliminates the latency induced by consulting the controller for every flow. 

 

3.3.4 SDN Programming Interfaces 
 
As already mentioned, the communication of the controller with the other layers is 

achieved through a southbound API for the controller-switch interactions and through 

a northbound API for the controller-application interactions. In this section, we briefly 

discuss the main concepts and issues related to SDN programming by separately 

examining each point of communication.  

 

3.3.4.1 Southbound communication 

 
The southbound communication is very important for the manipulation of the 

behavior of SDN switches by the controller. It is the way that SDN attempts to 

“program” the network. The most prominent example of a standardized southbound 

API is OpenFlow [1]. Most projects related to SDN assume that the communication of 

the controller with the switches is OpenFlow-based and therefore it is important to 

make a detailed presentation of the OpenFlow approach. However it should be made 

clear that OpenFlow is just one (rather popular) out of many possible implementations 

of controller-switch interactions. Other alternatives like for example DevoFlow [21] 

also exist, attempting to solve performance issues that OpenFlow faces. 

 

Overview of OpenFlow 

Following the SDN principle of decoupling the control and data planes, OpenFlow 

provides a standardized way of managing traffic in switches and of exchanging 



information between the switches and the controller, as Figure 3.2 illustrates. The 

OpenFlow switch is composed of two logical components. The first component 

contains one or more flow tables responsible for maintaining the information required 

by the switch in order to forward packets. The second component is an OpenFlow 

client, which is essentially a simple API allowing the communication of the switch 

with the controller. 

 

 

Figure 3.2 Design of an OpenFlow switch and communication with the controller 

 

The flow tables consist of flow entries, each of which defines a set of rules 

determining how the packets belonging to that particular flow will be managed by the 

switch (i.e. how they will be processed and forwarded). Each entry in the flow table 

has three fields: i) A packet header defining the flow, ii) An Action determining how 

the packet should be processed and iii) Statistics, which keep track of information like 

the number of packets and bytes of each flow and the time since a packet of the flow 

was last forwarded.  

Once a packet arrives at the OpenFlow switch, its header is examined and the 

packet is matched to the flow that has the most similar packet header field. If a 

matching flow is found, the action defined in the Action field is performed. These 

actions include the forwarding of the packet to a particular port in order to be routed 

through the network, the forwarding of the packet in order to be examined by the 

controller or the rejection of the packet. If the packet cannot be matched to any flow, 

it is treated according to the action defined in a table-miss flow entry. 



The exchange of information between the switch and the controller happens by 

sending messages through a secure channel in a standardized way defined by the 

OpenFlow protocol. This way, the controller can manipulate the flows found in the 

flow table of the switch (i.e. add, update or delete a flow entry) either proactively or 

reactively as discussed in the basic controller principles. Since the controller is able to 

communicate with the switch using the OpenFlow protocol, there is no longer a need 

for network operators to interact directly with the switch. 

A particularly compelling feature of OpenFlow is that the packet header field can 

be a wildcard, meaning that the matching to the header of the packet does not have to 

be exact. The idea behind this approach is that various network devices like routers, 

switches and middleboxes have a similar forwarding behavior, differing only in terms 

of which header fields they use for matching and the actions they perform. OpenFlow 

allows the use of any subset of these header fields for applying rules on traffic flows, 

meaning that it conceptually unifies many different types of network devices. For 

instance a router could be emulated by a flow entry using a packet header performing 

a match only on the IP address, while a firewall would be emulated through a packet 

header field containing additional information like the source and destination IP 

addresses and port numbers as well as the transport protocol employed. 

 

3.3.4.2 Northbound API 

 
As already discussed, one of the basic ideas advocated in the SDN paradigm is the 

existence of a network operating system, lying between the network infrastructure and 

the high level services and applications, similarly to how a computer operating system 

lies between the hardware and the user space. Assuming such a centralized 

coordination entity and based on the basic operating system principles, a clearly 

defined interface should also exist in the SDN architecture for the interaction of the 

controller with applications. This interface should allow the applications to access the 

underlying hardware, manage the system resources and allow their interaction with 

other applications without having any knowledge of low level network information.  

In contrast to the southbound communication, where the interactions between the 

switches and the controller are well-defined through a standardized open interface 

(i.e. OpenFlow), there is currently no accepted standard for the interaction of the 

controller with applications [12]. Therefore, each controller model needs to provide 



its own methods for performing controller-application communication. Moreover, 

even the interfaces current controllers implement provide very low-level abstractions 

(i.e. flow manipulation), which make it difficult to implement applications with 

different and many times conflicting objectives that are based in more high-level 

concepts. As an example, consider a power management and a firewall application. 

The power management application needs to re-route traffic using as few links as 

possible in order to deactivate idle switches, while the firewall might need these extra 

switches to route traffic as they best fit the firewall rules. Leaving the programmer to 

deal with these conflicts could become a very complex and cumbersome process. 

To solve this problem many ideas have been proposed, advocating the use of high-

level network programming languages responsible for translating policies to low level 

flow constraints, which in turn will be used by the controller to manage the SDN 

switches. These network programming languages can also be seen as an intermediate 

layer in the SDN architecture, placed between the application layer and the controller 

in a similar manner as to how high-level programming languages like C++ and 

Python exist on top of the assembly language for hiding the complex low level details 

of the assembly language from the programmer. Some examples of such high-level 

network programming languages include Frenetic [38] and Pyretic [39]. 

 

3.3.5 SDN Application Domains 
 

In order to demonstrate the applicability of SDN in a wide range of networking 

domains, we briefly present two characteristic examples in which SDN could prove to 

be beneficial: data centers and cellular networks. Of course, the list of SDN 

applications is not only limited to these domains, but is also extended in many others, 

from enterprise networks, WLANs and heterogeneous networks, to optical networks 

and the Internet of Things [6][12]. 

 

3.3.5.1 Data Center Networks 

 

One of the most important requirements for data center networks is to find ways to 

scale in order to support hundreds of thousands of servers and millions of virtual 

machines. However, achieving such scalability can be a challenging task from a 

network perspective. First of all, the size of forwarding tables increases along with the 



number of servers, leading to a requirement for more sophisticated and expensive 

forwarding devices. Moreover, traffic management and policy enforcement can 

become very important and critical issues, since datacenters are expected to 

continuously achieve high levels of performance.  

In traditional datacenters the aforementioned requirements are typically met 

through the careful design and configuration of the underlying network. This 

operation is in most cases performed manually by defining the preferred routes for 

traffic and by placing middleboxes at strategic choke points on the physical network. 

Obviously, this approach contradicts the requirement for scalability, since manual 

configuration can become a very challenging and error-prone task, especially as the 

size of the network grows. Additionally, it becomes increasingly difficult to make the 

data center operate at its full capacity, since it cannot dynamically adapt to the 

application requirements. 

The advantages that SDN offers to network management come to fill these gaps. 

By decoupling the control from the data plane, forwarding devices become much 

simpler and therefore cheaper. At the same time all control logic is delegated to one 

logically centralized entity. This allows the dynamic management of flows, the load 

balancing of traffic and the allocation of resources in a manner that best adjusts the 

operation of the data center to the needs of running applications, which in turn leads 

to increased performance [36]. Finally, placing middleboxes in the network is no 

longer required, since policy enforcement can now be achieved through the controller 

entity. 

 

3.3.5.2 Cellular Networks 

 

The market of cellular mobile networks is perhaps one of the most profitable in 

telecommunications. The rapid increase in the number of cellular devices (e.g., 

smartphones and tablets) during the past decade has pushed the existing cellular 

networks to their limits. Recently, there has been significant interest in integrating the 

SDN principles in current cellular architectures like the 3G Universal Mobile 

Telecommunications System (UMTS) and the 4G Long Term Evolution (LTE) [37].  

One of the main disadvantages of current cellular network architectures is that the 

core of the network has a centralized data flow, with all traffic passing through 



specialized equipment, which packs multiple network functions from routing to 

access control and billing (e.g. packet gateway in LTE), leading to an increase of the 

infrastructural cost due to the complexity of the devices and raising serious scalability 

concerns. Moreover, cell sizes of the access network tend to get smaller in order to 

cover the demands of the ever-increasing traffic and the limited wireless spectrum for 

accessing the network. However, this leads to increased interference among 

neighboring base stations and to the fluctuation of load from one base station to 

another due to user mobility, rendering the static allocation of resources no longer 

adequate. 

Applying the SDN principles to cellular networks promises to solve some of these 

deficiencies. First of all, decoupling the control from the data plane and introducing a 

centralized controller that has a complete view of the whole network allows network 

equipment to become simpler and therefore reduces the overall infrastructural cost. 

Moreover, operations like routing, real-time monitoring, mobility management, access 

control and policy enforcement can be assigned to different cooperating controllers 

making the network more flexible and easier to manage. Furthermore, using a 

centralized controller acting as an abstract base station simplifies the operations of 

load and interference management, no longer requiring the direct communication and 

coordination of base stations. Instead, the controller makes the decisions for the whole 

network and simply instructs the data plane (i.e. the base stations) on how to operate. 

One final advantage is that the use of SDN eases the introduction of virtual operators 

to the telecommunications market, leading to increased competitiveness. By 

virtualizing the underlying switching equipment all providers become responsible for 

managing the flows of their own subscribers through their own controllers, without 

the requirement to pay large sums for obtaining their own infrastructure. 

 

 

3.3.6 Relation of SDN to network virtualization and NFV 
 

Two very popular technologies closely related to SDN are network virtualization 

and Network Functions Virtualization (NFV). In this subsection we briefly attempt to 

clarify their relationship to SDN, since these technologies tend to become the cause of 

confusion especially for those recently introduced to the concept of SDN. 



Network virtualization is the separation of the network topology from the 

underlying physical infrastructure. Through virtualization it is possible to have 

multiple ‘virtual’ networks deployed over the same physical equipment, with each of 

them having a much simpler topology compared to that of the physical network. This 

abstraction allows network operators to construct networks as they see fit without 

having to tamper with the underlying infrastructure which can turn out to be a difficult 

or even impossible process. For instance, through network virtualization it becomes 

possible to have a virtual local area network (VLAN) of hosts spanning multiple 

physical networks or to have multiple VLANs on top of a single physical subnet.  

The idea behind network virtualization of decoupling the network from the 

underlying physical infrastructure bears resemblance to that advocated by SDN for 

decoupling the control from the data plane and therefore naturally becomes a source 

of confusion. The truth is that none of the two technologies is dependent on the other. 

The existence of SDN does not readily imply network virtualization. Similarly, SDN 

is not necessarily a prerequisite for achieving network virtualization. On the contrary, 

it is possible to deploy a network virtualization solution over an SDN network, while 

at the same time an SDN network could be deployed in a virtualized environment. 

Since its appearance SDN has closely coexisted with network virtualization, 

which acted as one of the first and perhaps the most important use cases of SDN.  The 

reason is that the architectural flexibility offered by SDN acted as an enabler for 

network virtualization. In other words, network virtualization can be seen as a 

solution focusing on a particular problem, while SDN is one (perhaps the best at this 

moment) architecture for achieving this. However, as already stressed, network 

virtualization needs to be seen independently from SDN. In fact, it has been argued by 

many that network virtualization could turn out to be even bigger technological 

innovation than SDN [7]. 

Another technology that is closely related but different from SDN is Network 

Functions Virtualization (NFV) [40]. NFV is a carrier-driven initiative with a goal to 

transform the way that operators architect networks by employing virtualization 

related technologies to virtualize network functions such as intrusion detection, 

caching, domain name service (DNS) and network address translation (NAT) so that 

they can run in software. Through the introduction of virtualization it is possible to 

run these functions over generic industry-standard high volume servers, switches and 

storage devices instead of using proprietary purpose-built network devices. This 



approach reduces operational and deployment costs, since operators no longer need to 

rely on expensive proprietary hardware solutions. Finally, flexibility in network 

management increases as it is possible to quickly modify or introduce new services to 

address changing demands. 

The decoupling of network functions from the underlying hardware is closely 

related to the decoupling of the control from the data plane advocated by SDN and 

therefore the distinction of the two technologies can be a bit vague. It is important to 

understand that even though closely related, SDN and NFV refer to different domains. 

NFV is complementary to SDN but does not depend on it and vice-versa. For 

instance, the control functions of SDN could be implemented as virtual functions 

based on the NFV technology. On the other hand, an NFV orchestration system could 

control the forwarding behavior of physical switches through SDN. However, neither 

technology is a requirement for the operation of other, but both could benefit from the 

advantages each can offer. 

 

3.4 Impact of SDN to Research and Industry 

Having seen the basic concepts of SDN and some important applications of this 

approach, it is now time to briefly discuss the impact of SDN to the research 

community and the industry. While the focus of each interested party might be 

different, from designing novel solutions exploiting the benefits of SDN to developing 

SDN enabled products ready to be deployed in commercial environments, their 

involvement in the evolution of SDN helps in shaping the future of this technology. 

Seeing what the motivation and the focus of current SDN-related attempts will 

provide us with indications of what will potentially drive future research in this field. 

 

3.4.1 Overview of Standardization activities and SDN summits 
 

Recently, several standardization organizations have started focusing on SDN, 

each working in providing standardized solutions for a different part of the SDN 

space. The benefits of such efforts are very significant, since standardization is the 

first step towards the wide adoption of a technology. 

The most relevant standardization organization for SDN is considered the Open 

Networking Foundation (ONF) [41], which is a non-profit industry consortium 

founded in 2011. It has more than 100 company-members including telecom 



operators, network and service providers, equipment vendors and networking and 

virtualization software suppliers. Its vision is to make SDN the new norm for 

networks by transforming the networking industry to a software industry through the 

open SDN standards. To achieve this, it attempts to standardize and commercialize 

SDN and its underlying technologies, with its main accomplishment the 

standardization of the OpenFlow protocol, which is also the first SDN standard. ONF 

has a number of working groups working in different aspects of SDN from 

forwarding abstractions, extensibility, configuration and management to educating the 

community on the SDN value proposition. 

The Internet Engineering Task Force (IETF), which is a major driving force in 

developing and promoting Internet standards, also has a number of working groups 

focusing on SDN in a broader scope than just OpenFlow. The Software-Defined 

Networking Research Group (SDNRG) [42] focuses on identifying solutions related 

to the scalability and applicability of the SDN model as well as for developing 

abstractions and programming languages useful in the context of SDN. Finally, it 

attempts to identify SDN use cases and future research challenges. On a different 

approach, the Interface to the Routing System (I2RS) [43] working group is 

developing an SDN strategy, counter to the OpenFlow approach, in which traditional 

distributed routing protocols can run on network hardware to provide information to a 

centrally located manager. Other SDN related IETF working groups include ALTO 

[44] for application layer traffic optimization using SDN and CDNI [45] studying 

how SDN can be used for Content Delivery Network (CDN) interconnection. 

Some study groups (SGs) of ITU’s Telecommunication Standardization Sector 

(ITU-T) [46] are also looking on SDN for public telecommunication networks. For 

instance Study Group 13 (SG13) is focusing on a framework of telecom SDN and on 

defining requirements of formal specification and verification methods for SDN. 

Study Group 11 (SG11) is developing requirements and architectures on SDN 

signaling, while Study Group 15 (SG15) has started discussions on transport SDN. 

Other standardization organizations that have also been interested in applying the 

SDN principles include the Optical Internet Forum (OIF) [47], the Broadband Forum 

(BBF) [48] and the Metro Ethernet Forum (MEF) [49]. OIF is responsible for 

promoting the development and deployment of interoperable optical networking 

systems and it supports a working group to define the requirements for a transport 

network SDN architecture. BBF is a forum for fixed line broadband access and core 



networks, working on a cloud-based gateway that could be implemented using SDN 

concepts. Finally, MEF has as its goal to develop, promote and certify technical 

specifications for carrier Ethernet services. One of its directions is to investigate 

whether MEF services could fit within an ONF SDN framework. 

 Apart from the work performed on standardizing SDN solutions, there exist a 

number of summits for sharing and exploring new ideas and key developments 

produced in the SDN research community. The Open Networking Summit (ONS) is 

perhaps the most important SDN event having as a mission “to help the SDN 

revolution succeed by producing high-impact SDN events”. Other SDN related 

venues have also started emerging like for instance the SDN & NFV Summit for 

solutions on network virtualization, the SDN & OpenFlow World Congress, the 

SIGCOMM workshop on Hot Topics in Software Defined Networking (HotSDN) and 

the IEEE/IFIP International Workshop on SDN Management and Orchestration 

(SDNMO).  

 

3.4.2 SDN in the Industry 
 
The advantages that SDN offers compared to traditional networking have also 

made the industry focus on SDN either for using it as a means to simplify 

management and improve services in their own private networks or for developing 

and providing commercial SDN solutions.  

Perhaps one of the most characteristic examples for the adoption of SDN in 

production networks is Google, which entered in the world of SDN with its B4 

network [50] developed for connecting its data centers worldwide. The main reason 

for moving to the SDN paradigm, as explained by Google engineers, was the very fast 

growth of Google’s back-end network. While computational power and storage 

become cheaper as scale increases, the same cannot be said for the network. By 

applying SDN principles the company was able to choose the networking hardware 

according to the features it required, while it managed to develop innovative software 

solutions. Moreover the centralized network control made the network more efficient 

and fault tolerant providing a more flexible and innovative environment, while at the 

same time it led to a reduction of operational expenses. More recently, Google 

revealed Andromeda [51], a software defined network underlying its cloud, which is 

aimed at enabling Google’s services to scale better, cheaper and faster. Other major 



companies in the field of networking and cloud services like Facebook and Amazon 

are also planning on building their next generation network infrastructure based on the 

SDN principles. 

Networking companies have also started showing interest in developing 

commercial SDN solutions. This interest is not limited in developing specific products 

like OpenFlow switches and network operating systems, rather there is a trend for 

creating complete SDN ecosystems targeting different types of customers. For 

instance companies like Cisco, HP and Alcatel have entered the SDN market, 

presenting their own complete solutions intended for enterprises and cloud service 

providers, while telecommunication companies like Huawei are designing solutions 

for the next generation of telecom networks, with a specific interest in LTE and LTE-

Advanced networks. In 2012, VMware acquired an SDN startup called Nicira in order 

to integrate its Network Virtualization Platform (NVP) to NSX, VMware’s own 

network virtualization and security platform for software-defined data centers.  The 

list of major companies providing SDN solutions constantly grows, with many others 

like Broadcom, Oracle, NTT, Juniper and Big Switch Networks recognizing the 

benefits of SDN and proposing their own solutions. 

 

3.4.3 Future of SDN 
 

Going back to the beginning of this discussion and looking at all the intermediate 

steps that led to modern software defined networks, it is tricky to predict what lies in 

the future. Previous attempts for redesigning the network architecture have shown that 

very promising technologies can fail due to lack of the proper conditions, while 

success depends on a number of factors from finding compelling use cases for the 

emerging technology to managing its adoption not only by the research community 

but by the industry as well. The way that SDN deals with these matters makes it a 

very promising candidate for being the next major disruption in the networking field. 

The benefits of applying the SDN principles in different types of networks, the 

unification of heterogeneous environments and the wide number of applications that 

this paradigm offers demonstrate its very high potential to become a major driving 

force commercially in the very near future especially for cloud-service providers, 

network operators and mobile carriers. It remains to be seen whether these predictions 

will be confirmed and to what extent SDN will deliver its promises. 



 

References 

[1]  McKeown, Nick, et al. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM 

Computer Communication Review 38.2 (2008): 69-74. 

[2]  Campbell, Andrew T., et al. "Open signaling for ATM, internet and mobile networks 

(OPENSIG'98)." ACM SIGCOMM Computer Communication Review 29.1 (1999): 97-108. 

[3]  Tennenhouse, David L., et al. "A survey of active network research." IEEE Communications 

Magazine, 35.1 (1997): 80-86. 

[4]  Van der Merwe, Jacobus E., et al. "The tempest-a practical framework for network 

programmability." IEEE Network 12.3 (1998): 20-28. 

[5]  "Devolved Control of ATM Networks," Available from 

http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/. 

[6]  Qadir, Junaid, Nadeem Ahmed, and Nauman Ahad. "Building Programmable Wireless Networks: 

An Architectural Survey." arXiv preprint arXiv:1310.0251 (2013). 

[7]  Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN." ACM Queue 11.12 

(2013): 20-40. 

[8]  Shalaby, Nadia, et al. "Snow on Silk: A NodeOS in the Linux kernel." Active Networks. Springer 

Berlin Heidelberg, 2002. 1-19. 

[9]  Merugu, Shashidhar, et al. "Bowman: A node OS for active networks." INFOCOM 2000. In 

Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and 

Communications Societies, 3 (2000): 1127-1136. 

[10]  D. J. Wetherall, J. V. Guttag and D. L. Tennenhouse, "ANTS: A toolkit for building and 

dynamically deploying network protocols," IEEE Open Architectures and Network 

Programming, (1998). 117-129.  

[11]  Hicks, Michael, et al. "PLAN: A packet language for active networks." ACM SIGPLAN Notices. 

34.1 (1998):86-93. 

[12] Nunes, B., et al. "A Survey of Software-Defined Networking: Past, Present, and Future of 

Programmable Networks," IEEE Communications Surveys & Tutorials, PP.99 (2014): 1-18. 

[13]  Yang, Lily, et al. Forwarding and control element separation (ForCES) framework. RFC 3746, 

April, 2004. 

[14]  Greenberg, Albert, et al. "A clean slate 4D approach to network control and management." ACM 

SIGCOMM Computer Communication Review 35.5 (2005): 41-54. 

[15]  Hong Yan, et al., "Tesseract: A 4D Network Control Plane," 4th USENIX Symposium on 

Networked Systems Design & Implementation.  7 (2007): 369-382.  

[16]  Casado, Martin, et al. "SANE: A Protection Architecture for Enterprise Networks." 15th USENIX 

Security Symposium. (2006): 137-151. 

[17]  Casado, Martin, et al. "Ethane: Taking control of the enterprise." ACM SIGCOMM Computer 

Communication Review 37.4 (2007): 1-12.  

[18]  Chun, Brent, et al. "Planetlab: an overlay testbed for broad-coverage services." ACM SIGCOMM 

Computer Communication Review 33.3 (2003): 3-12.  

[19]  Gude, Natasha, et al. "NOX: towards an operating system for networks." ACM SIGCOMM 

Computer Communication Review 38.3 (2008): 105-110.  

[20]  Sivaraman, Anirudh, et al. "No silver bullet: extending SDN to the data plane." Proceedings of 

the Twelfth ACM Workshop on Hot Topics in Networks.  19 (2013): 1-7. 

[21]  Curtis, Andrew R., et al. "Devoflow: scaling flow management for high-performance 



networks." ACM SIGCOMM Computer Communication Review. 41.4 (2011): 254-265. 

[22] Yu, Minlan, et al. "Scalable flow-based networking with DIFANE." ACM SIGCOMM Computer 

Communication Review 40.4 (2010): 351-362. 

[23]  Lu, Guohan, et al., "Using cpu as a traffic co-processing unit in commodity switches,"  

Proceedings of the first workshop on Hot topics in software defined networks, (2012): 31-36.  

[24]  Bosshart, Pat, et al., "Forwarding metamorphosis: Fast programmable match-action processing in 

hardware for SDN," SIGCOMM Computer Communication Review. 43.4 (2013): 99-110.  

[25]  Z. Cai, A. L. Cox and T. E. Ng, "Maestro: A system for scalable OpenFlow control," Technical 

Report TR10-08, Rice University, (2010). 

[26]  Koponen, Teemu, et al., "Onix: A Distributed Control Platform for Large-scale Production 

Networks," 9th USENIX Symposium on Operating Systems Design and Implementation, OSDI. 10 

(2010): 1-6.  

[27]  A. Tootoonchian and Y. Ganjali, "Hyperflow: a distributed control plane for openflow," in 

Proceedings of the 2010 internet network management conference on Research on enterprise 

networking. USENIX Association, (2010): 3-8.  

[28]  S. H. Yeganeh and Y. Ganjali, "Kandoo: a framework for efficient and scalable offloading of 

control applications," in Proceedings of the first workshop on Hot topics in software defined 

networks. ACM, (2012): 19-24.  

[29]  Sherwood, Rob, et al., "Flowvisor: A network virtualization layer," Technical Report, OpenFlow 

Switch Consortium (2009). 

[30]  Shalimov, Alexander, et al. "Advanced study of SDN/OpenFlow controllers." Proceedings of the 

9th Central & Eastern European Software Engineering Conference in Russia. ACM, (2013).  

[31]  Tootoonchian, Amin, et al., "On controller performance in software-defined networks," in 

USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks 

and Services (Hot-ICE), 54 (2012) .  

[32]  A. Voellmy and J. Wang, "Scalable software defined network controllers," in Proceedings of the 

ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for 

computer communication. ACM, (2012): 289-290.  

[33]  B. Heller, R. Sherwood and N. McKeown, "The controller placement problem," in Proceedings of 

the first workshop on Hot topics in software defined networks. ACM, (2012): 7-12.  

[34]  S. Schmid and J. Suomela, "Exploiting locality in distributed sdn control," in Proceedings of the 

second ACM SIGCOMM workshop on Hot topics in software defined networking. ACM, (2013): 

121-126.  

[35]  Canini, Marco, et al., "Software transactional networking: Concurrent and consistent policy 

composition," in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software 

defined networking. ACM, (2013): 1-6.  

[36]  Al-Fares, Mohammad, et al., "Hedera: Dynamic Flow Scheduling for Data Center Networks," 7th 

USENIX Symposium on Networked Systems Design & Implementation, 10 (2010): 19-34.  

[37]  L. E. Li, Z. M. Mao and J. Rexford, "Toward software-defined cellular networks," European 

Workshop on Software Defined Networking (EWSDN). IEEE, (2012): 7-12.  

[38]  Foster, Nate, et al., "Frenetic: A network programming language," ACM SIGPLAN Notices,  46.9 

(2011): 279-291.  

[39]  Monsanto, Christopher, et al, "Composing software-defined networks," in 10th USENIX 

Symposium on Networked Systems Design & Implementation, (2013):1-13.  

[40]  Cui, Chunfeng, et al., "Network Functions Virtualisation,". Available from 

http://portal.etsi.org/NFV/NFV_White_Paper.pdf.  

[41]  "ONF - Open Networking Foundation,".  Available from https://www.opennetworking.org/. 



[42]  "IRTF SDNRG,". Available from https://irtf.org/sdnrg. 

[43]  "IETF I2RS,". Available from http://datatracker.ietf.org/wg/i2rs/. 

[44]  "ALTO and SDN,".  Available from http://www.ietf.org/proceedings/84/slides/slides-84-alto-5. 

[45]  "IETF CDNI and SDN,". Available from http://www.ietf.org/proceedings/84/slides/slides-84-

cdni-1.pdf. 

[46]  "ITU Telecommunication Standardization Sector,".  Available from http://www.itu.int/en/ITU-T. 

[47]  "OIF - Optical Internetworking Forum,". Available from http://www.oiforum.com/. 

[48]  "Broadband Forum and SDN,". Available from http://www.broadband-

forum.org/technical/technicalwip.php. 

[49]  "MEF - Metro Ethernet Forum,". Available from http://metroethernetforum.org/. 

[50]  Jain, Sushant, et al., "B4: Experience with a globally-deployed software defined WAN," in 

Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, (2013): 3-14.  

[51]  A. Vahdat, "Enter the Andromeda zone - Google Cloud Platform’s latest networking stack," 

Available from http://googlecloudplatform.blogspot.gr/2014/04/enter-andromeda-zone-google-

cloud-platforms-latest-networking-stack.html. 

  

 

 


