
Towards Scalable and Cost-Effective RAN Emulation
Leveraging the Public Cloud

Ujjwal Pawar†, Andrew E. Ferguson†, Yuto Takano†, Jon Larrea†, Xenofon Foukas‡
Mahesh K. Marina† and Bozidar Radunovic‡
The University of Edinburgh† Microsoft Research‡

Abstract

The rise of data-driven and AI-powered monitoring in 5G and be-
yond has created a need for RAN digital twins to test and enhance
network performance without disrupting real-world operations.
However, large-scale RAN emulation remains challenging due to
the complexity of the RAN protocol stack and the high cost of
hardware-based solutions. Software alternatives are more afford-
able but current solutions sacrifice fidelity or scalability. This paper
presents Chronos, a cloud-based RAN emulation system that over-
comes these challenges by abstracting the compute-intensive PHY
layer, virtualizing emulation time, RAN slot level synchronization
and scalable switch based traffic forwarding. Experiments using
OpenAirInterface based prototype on public cloud infrastructure
demonstrate Chronos’ ability to emulate 250 base stations and
1000 UEs with 468 CPU cores at high fidelity, reflecting its potential
for enabling scalable RAN emulation in an affordable manner.

CCS Concepts

• Networks→ Network simulations;Mobile networks; Cloud
computing.

Keywords

RAN Emulation, 5G Digital Twin, Public Cloud
ACM Reference Format:

Ujjwal Pawar†, Andrew E. Ferguson†, Yuto Takano†, Jon Larrea†, Xenofon
Foukas‡, Mahesh K. Marina† and Bozidar Radunovic‡. 2025. Towards Scal-
able and Cost-Effective RAN Emulation Leveraging the Public Cloud. In The
26th International Workshop on Mobile Computing Systems and Applications
(HOTMOBILE ’25), February 26–27, 2025, La Quinta, CA, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3708468.3711895

1 Introduction

The emergence of data-driven, AI powered monitoring and control
of the mobile Radio Access Network (RAN) in the 5G and beyond
era has created a need for RAN digital twins [15–17]. Assisted
by the softwarization of the RAN, such emulated environments
can be used to evaluate new ideas and test new services that can
improve the RAN performance and the user experience, without
affecting the real network’s operation. This opens up exciting new
avenues for the emulation of large scale deployments (e.g., hundreds
of base stations or even a whole city), which so far have been

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
HOTMOBILE ’25, La Quinta, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1403-0/25/02
https://doi.org/10.1145/3708468.3711895

impossible to create and experiment with in resource-constrained
lab environments.

Despite its promise, the opportunity for RAN emulation at scale
still largely remains untapped. To emulate a large-scale production
RAN environment with high fidelity, one has to accurately capture
the behavior and interactions of its internal components (e.g., radio
resource scheduler) and the message exchanges of all the involved
protocols (e.g., MAC, RLC, RRC). Considering the high complexity
that characterizes the RAN protocol stack, this can only be achieved
if the digital twin leverages the same unmodified RAN software that
is also used in the production environment. Today, such a capability
is only offered by sophisticated emulators that are built on top
of custom hardware (e.g., [2, 6]). This hardware based approach
makes such solutions very expensive to deploy and scale on demand,
limiting their use to the labs of major telco vendors and operators.
Similarly, channel emulators [1, 18] and testbeds [8, 9] are expensive
to scale.

In contrast, software based approaches (e.g., [12, 13, 19]) offer
a cost-effective alternative. Existing solutions in this category sac-
rifice fidelity to different degrees and vary in the scale they can
support. Simulators like ns-3 [13] use a simplified RAN stack that
only captures some aspects of the RAN functionality (e.g., a specific
RAN protocol or component). Such simulators can scale well and
can be useful for early prototyping, but have met limited success in
practice from not providing the assurance needed for real-network
deployments. On the other hand, software based RAN emulators
like EMANE [19] take a different track by abstracting away the
computationally heavy physical (PHY) layer and can in principle
support an unmodified RAN stack. However, they scale poorly, as
we show through our evaluations (§4).

Motivated by these observations, we ask the following question:
Can we push the boundary of the software based approach to cost-
effectively achieve real-world, high-fidelity RAN emulation at scale
(with at least 100s of base stations and mobile devices) by leveraging
the elasticity and scale of the public cloud? The capability of the
cloud for on-demand allocation of compute and network resources
at scale means that one could perform large scale emulations with
real (unmodified) RAN software without the need for high upfront
investments or maintenance costs.

While this is a compelling proposition, running RAN emulation
scenarios in a public cloud setting and at large scale presents new
challenges, which stem from the resource demanding nature of the
RAN, its stringent latency requirements, and the high CPU and
network latencies characterizing the public cloud. This is because
RAN functions demand substantial compute and network resources,
often requiring multiple CPU cores and gigabits of traffic per cell.

43

https://doi.org/10.1145/3708468.3711895
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3708468.3711895
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708468.3711895&domain=pdf&date_stamp=2025-02-26


HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA U. Pawar† , A. Ferguson† , Y. Takano† , J. Larrea† , X. Foukas‡ , M. K. Marina† , B. Radunovic‡

0 100 200 300 400 500 600
Interrupt Latency (µs)

0

0.9

0.99

0.999

0.9999

0.99999

1.0

100% of slot time

0 200 400 600 800 1000 1200
Network Latency (µs)

0

10−4

10−3

10−2

10−1

100

100% of slot time

AWS Compute-Optimised
AWS Compute-Optimised (Cheap)

AWS General
AWS General (Cheap)

Azure General
Azure General (Cheap)

GCP Compute-Optimised
GCP General

Figure 1: CDFs of VM interruption and network latencies for different cloud providers.

Scaling emulation to hundreds of base stations becomes prohibi-
tively expensive, needing thousands of CPU cores and terabits of ca-
pacity. Additionally, RAN software must meet strict sub-millisecond
latency requirements, which public clouds struggle to support due
to unpredictable hypervisor preemptions and high networking la-
tencies from multi-layered infrastructure. These delays can violate
RAN runtime deadlines, compromising emulation fidelity.

To overcome these challenges, we propose a cloud based RAN
emulation system design called Chronos. The emulator brings
together multiple key ideas to enable RAN emulation at any scale:
i) it replaces the compute and network intensive PHY layer and
channel of the RAN and associated user devices (UEs) with an
emulated link based on the standard FAPI interface; ii) it introduces
a custom hypervisor that virtualizes the emulation time, effectively
shielding the emulated network functions from external CPU and
network latencies; iii) it operates at the granularity of RAN slots
and uses the slots as synchronization barriers among emulation
components to allow flexible scaling; and iv) it introduces a logically
centralized software switch to forward the control and data plane
FAPI traffic between the RAN and the emulated mobile devices in a
scalable manner.

To demonstrate the benefits of Chronos’ design, we develop
a Proof of Concept (POC) of the system on Ubuntu Linux, using
a custom Kernel-based Virtual Machine (KVM) Hypervisor and
a RAN based on the OpenAirInterface (OAI) software stack. Our
experiments, performed over a public cloud, highlight the fidelity
of our emulator in terms of both control and data plane operations
when compared with a standard over-the-air RAN deployment with
real UEs, using the same OpenAirInterface stack as in the emulation
setting. Furthermore, they demonstrate the scalability of Chronos’
design, which allows us to achieve emulation scenarios with 250
base stations and 1000 UEs using 3 cloud VMs with an aggregate
of 468 CPU cores. To our knowledge, this is the first work that
has demonstrated high-fidelity RAN emulation at such scales cost-
effectively, bringing us one step closer to realizing the vision of a
scalable and affordable RAN digital-twin.

2 Challenges of large scale RAN emulation in

the public cloud

Here we discuss the challenges of performing large scale RAN
emulation in the public cloud.
RAN resource requirements – The 5G RAN network functions
can be very demanding in terms of compute and network resources,
requiring several CPU cores and high network bandwidth for their
operation. As an example, we deploy a single 100MHz 4 × 4 MIMO
5G cell based on the open source srsRAN software stack [5] and
measure its CPU and network utilization when fully saturated with
traffic. We observe that a minimum of 8 CPU cores and a 10G NIC
interface is required to achieve full downlink throughput (∼1Gbps
DL). Upon further inspection, we observe that more than 60% of the
CPU resources are required for the PHY signal processing. Similarly,
more than 3.5Gbps of the cell’s network traffic correspond to the
fronthaul traffic (radio signals) going out of the base station, towards
the radio unit. Similar observations can also be made for other
RAN stacks [3, 11]. As such, emulating a large scale network with
hundreds of base stations would require thousands of CPU cores
and terabits of network capacity, which would make the emulation
unviable, due to the cost or the availability of resources.
RAN latency requirements – The RAN operates in a time slotted
fashion, with each slot having a duration in the order of hundreds
of microseconds up to a millisecond. During each slot, the MAC
scheduler of the RAN needs to perform the radio resource allo-
cation in the control plane for both the uplink and the downlink
direction. This involves deciding which users to schedule, their
traffic flow priorities, how many resource blocks to allocate, etc.
At the same time, the RAN also has to deal with the processing
of the actual packets of users in the dataplane (e.g., segmentation,
adding headers, retransmissions). Both these control and the data
plane operations must take place within the duration of the slot.
Otherwise, emulation fidelity will suffer due to packet drops, user
detaches or even worse RAN crashes.
Cloud VM interruption and network latencies – Public clouds
provide an almost infinite amount of compute and network re-
sources on demand, making them promising environments for

44



Towards Scalable and Cost-Effective RAN Emulation Leveraging the Public Cloud HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA

realizing digital twins. However, they have been designed with cost
and scale in mind considering general purpose workloads, but are
not optimized for latency sensitive workloads like the RAN. For
example, a single server may be shared between multiple differ-
ent VMs causing frequent VM preemptions. Similarly, VMs of a
single virtual network can often be placed across different racks,
with multiple layers of switches between them. While this design
is appropriate for the vast majority of cloud workloads, it can lead
to serious problems when used for RAN emulation, where the tail
latency has to be strictly bounded.

The magnitude and frequency of such VM interruptions and net-
work latencies can vary across cloud providers, or even within the
same provider, but they are always present and therefore problem-
atic. To quantify the nature of these latencies, we performed mea-
surements, using cloud VMs of different providers (Microsoft Azure,
Amazon Web Services (AWS) and Google Cloud Platform (GCP)),
including different flavors of VMs from the same provider tailored
for reduced cost or higher performance. We used osnoise [4], pro-
vided as part of the Linux kernel, for measuring CPU interference
and thus VM interruption latencies. For network latencies, we mea-
sured the ping RTT time for two VMs of the same type, that are
co-located within the same region.

From the measurement results shown in Figure 1, Right, we ob-
serve that network related latency is relatively higher. Considering
a typical 5G slot time of 0.5ms, the best median network latency
is around 20% of the slot time and the tail latency is close to 40%.
Given the scale of a public cloud, this is a fundamental challenge,
since the likelihood that all VMs taking part in the emulation will
be located close to each other (e.g., the same TOR switch) becomes
increasingly smaller as we scale out the emulated network size.

The tail VM interruption latency of most cloud VMs is also
high compared to what would be seen on a local VM (Figure 1,
Left). Several of them have tail latencies that exceed 20% of the
time allocated to one slot. The differences between the latency
distribution of different variants stem from the technology used
and the hypervisor configuration, with cheaper machines generally
having higher tail latencies.

Overall, given these observed latencies, we can see that the RAN
software can spend a large fraction of a slot time (> 20%) waiting.
Since each missed deadline reflects in packet loss, this directly af-
fects the emulation fidelity – we observe packet losses of up to 20%
if the RAN software runs as-is in the public cloud.

3 Chronos System Overview

We aim to achieve high fidelity and cost-effective large scale RAN
emulation leveraging the public cloud by addressing the challenges
highlighted in the previous section. To this end, we introduce
Chronos, our cloud based RAN emulation system design. We start
by first outlining our approach and system architecture (illustrated
in Figure 2), and then describe its proof-of-concept implementation.

3.1 Approach and System Architecture

To alleviate the high RAN resource requirements, and thereby allow
scalable and cost-effective RAN emulation in the cloud, we choose
to replace the real PHY and channel between a base station and

Switch

Hypervisor

Emulation 
VM

SM

Hypervisor

Emulation 
VM

SM Hypervisor

Emulation 
VM

SM

Hypervisor

Emulation 
VM

SM

Slot 
Coordinator

Figure 2: ChronosArchitecture Schematic. SM: Slot Monitor.

associated UEs with an “emulated link”, leveraging the standard
FAPI interface [10]. While the FAPI was originally intended for
standardizing the interface between the MAC and PHY layers on
the base station side, we extend this to the UE side. This not only
permits using real unmodified RAN stacks on the base station side
(DU and CU –MAC layer and above) but also allows communicating
directly between 3GPP compliant base stations and softwarized
UEs through their MAC layers using FAPI message exchanges.
While this approach has been adopted in prior software based RAN
emulators (notably in EMANE [19]), we use this as one piece of a
comprehensive approach towards scalable RAN emulation over the
public cloud infrastructure.

To meet the stringent timing requirements for high-fidelity RAN
emulation in the presence of vagaries characteristic of the public
cloud environment (VM interruption and network latencies), our
approach involves “virtualizing” the time. To realize this idea, our
design features a custom VM Hypervisor that runs inside each
cloud VM instance used for realizing a RAN emulation scenario
(with a given number of base stations, UEs and their traffic and mo-
bility behaviors). This Hypervisor shields any network function in
the emulation scenario (e.g., RAN, core, UEs, user applications) de-
ployed in nested “emulation VMs” from external sources of latency
that can affect the real-time behavior and deadlines of the RAN. Em-
ulation VMs are the VMs deployed over the custom Hypervisor to
realize the various components of an emulation scenario (CU/DU
vRAN functions of a base station, emulated RUs, emulated UEs,
mobile core). The Hypervisor achieves this goal by creating a sand-
boxed environment, where the time is virtualized and advanced
based on the progress of the emulated components (similar in spirit
to [7]), rather than based on the real time that passes in the physical
world. This gives the network functions the illusion that no dead-
line violations ever occur (due to VM preemptions, high network
latency, limited compute or network resources etc.), meaning that
the correct behavior of the RAN is always ensured.

Building on the above, we enable RAN emulation of any scale by
allowing the use of multiple emulation VMs within and across cloud
VM instances, while not compromising fidelity. To make this possi-
ble, we advance the emulation time at the granularity of the RAN
slot duration (1ms in 4G and as low as 0.125ms in 5G) and then use
the slots as natural synchronization barriers for emulation VMs. We
use a Slot Monitor (Figure 2) within each Hypervisor to monitor
and ensure that each of its hosted emulation VMs finish their pro-
cessing within the current slot. The Slot Coordinator plays the

45



HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA U. Pawar† , A. Ferguson† , Y. Takano† , J. Larrea† , X. Foukas‡ , M. K. Marina† , B. Radunovic‡

0.000 0.353

(a)

0.0000 0.2047
Time (Seconds)

(b)

Physical Chronos

Figure 3: Control plane fidelity: Physical (testbed) vs. Chronos.

Scenario
Single UE (Mbps) Two UEs (Mbps)

Physical Chronos EMANE Physical Chronos EMANE

TCP UL 18 18 14.4 10.1, 8.09 9.98, 8.30 8.33, 6.28

TCP DL 32 32 29.2 17.3, 15.3 17.9, 15.7 16.1, 15.6

UDP DL 35 35 32.9 17, 17 17, 17 17.4, 16

UDP UL 18.5 18.5 15 8.97, 8.94 8.75, 8.95 9.94, 7.06

Figure 4: Data plane fidelity.

same role at the level of cloud VM instances, each with its own cus-
tom Hypervisor. The Slot Coordinator additionally advances
the emulation to the next slot, once every emulation VM finishes
with the current slot. This ensures that emulation progresses once
all VMs complete processing in the slot.

To enable the communication of emulation VMs across cloud
VM instances, our design employs a logically centralized software
Switch, which is responsible to forward the control and data plane
traffic between a base station and its emulated UEs. Mimicking
the broadcast nature of the communication medium between base
stations and UEs as in the real world can lead to a very high net-
work bandwidth requirement, especially in the downlink from base
station to UE as every message regardless of its intended destina-
tion UE is received by every UE. To avoid such redundant network
bandwidth usage, the Switch in Chronos filters the message and
logically creates point-to-point communication between base sta-
tions and emulated UEs in both the uplink and downlink directions.
Our design, as outlined above allows realizing any given RAN em-
ulation scenario at high fidelity by suitably dilating the emulation
runtime to cope with the underlying public cloud characteristics
and the provided (compute and network) resources.

3.2 POC Implementation

We developed a POC implementation of Chronos on Ubuntu 20.04
as per the above outlined design, consisting of all the system com-
ponents shown in Figure 2.

The Hypervisor is implemented based on the KVM Hypervisor
(in kernel version 5.15.160) and setup to use our clock source.
The clock source is implemented as a kernel module to generate
a new Time Stamp Counter (TSC) value every 10 microseconds
using a high-resolution timer (HRtimer). This module also provides
an interface, via shared memory, to dynamically adjust the flow of
time, enabling on-demand time dilation. Slot Monitor running in
userspace can stop time through this shared memory.

The Slot Monitor and the Slot Coordinator communicate
via UDP sockets. The Slot Coordinator generates nFAPI slot indi-
cation messages and interacts with the Slot Monitor to signal the
start of a slot. Upon receiving a slot start message from the coordi-
nator, the Slot Monitor starts a timer for the slot duration. Once
the timer expires, it uses the shared memory interface provided by
the local clock source to pause the clock, keeping it paused until
the next slot start is received.

4 Preliminary Evaluation

Here we present our preliminary evaluation of Chronos using its
POC implementation. All our experiments were conducted on the
public cloud using the GCP. We have also tested the functionalities
of our custom kernel and hypervisor on AWS and Azure. To simplify
the deployment, we set up a Kubernetes cluster with emulation
VMs running on our Hypervisor. The Switch runs on a separate
machine with an unmodified Linux kernel provided by GCP.

For the RAN, we used the OpenAirInterface 4G codebase [3]. To
detect when the RAN has completed processing a slot, we evaluated
two approaches: modifying the RAN to send an explicit indication
message, or using eBPF probes to monitor the RAN’s state. Both
strategies were tested, and for this evaluation, we used the former.
For the UE, we used the OpenAirInterface emulator UE, which is
compliant with 3GPP standards, and modified it to interface with
the Switch.

4.1 Fidelity

For fidelity evaluation, we deploy a testbed consisting of two OAI
4G RAN base stations, an Open5GS core, and a Commercial Off-
The-Shelf (COTS) UE, with the RAN operating in FDD mode at 10
MHz for all experiments unless otherwise specified. We then create
a Digital Twin (DT) of this setup on GCP using Chronos, where
the RAN and core versions are identical to the real testbed, but
instead of using the COTS UE, we utilize our emulated UE. To build
this digital twin, we use three GCP machines, each with 30 cores.
Two of the machines run Ubuntu 20.04 with a modified kernel with
Hypervisor. Each machine hosts two RAN emulation VMs each. A
third machine, running Ubuntu 20.04 with the default GCP kernel,
is used for the Switch and Slot Coordinator.

To evaluate the fidelity of our DT, we focus on three common
mobile network operations: Attach, Handover, and Data Transfer.
Figure 3 (a) illustrates the timing of events during the Attach pro-
cedure, showing that both the DT and the testbed follow a similar
timeline. Likewise, Figure 3 (b) shows the events during the Han-
dover procedure, where handover events are occurring at the same
intervals in both cases. We also measure the average time required
to complete these procedures using a COTS UE and emulated UE.
Both the Attach and Handover procedures took nearly the same
average time in both environments. Specifically, the handover was
completed in 0.2 seconds, while the attach procedure took 0.35
seconds. These two experiments demonstrate the fidelity of our
DT in replicating control plane procedures, as both the timing of

46



Towards Scalable and Cost-Effective RAN Emulation Leveraging the Public Cloud HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA

1 5 10 20 30 40 50 75 100
0

20

40

60

80

100

EMANE Chronos

Number of UEs

D
at

a
P

la
n

e 
C

o
n

n
ec

ti
o

n
s 

(%
)

1 5 10 20 30 40 50 75 100
0

500

1000

1500

2000

2500

3000

Number of UEs

N
u

m
b

er
 o

f 
R

A
C

H
 F

ai
lu

re
s

EMANE Chronos

0 100 200 300 400 500
Number of UE

4
6
8

10
12
14
16
18
20

D
ila

ti
on

 F
ac

to
r UE

0 50 100 150 200 250
Number of BS

20
30
40
50
60
70
80

D
ila

ti
on

 F
ac

to
r BS

Figure 5: (a) Scalability of Chronos vs. EMANE, expressed as the percentage of UEs able to attach and form a data plane

connection; (b) Number of reported RACH failures at varying scales of UEs for EMANE. Chronos not shown as there were

zero RACH failures. Scaling of Chronos given a fixed compute resource with adaptive dilation of emulation runtime with (c)

varying UEs and (d) varying BSs.

events and the total duration closely match those observed in the
testbed.

To evaluate data plane fidelity, we generate various types of
traffic in both the DT and the real testbed using iperf3. The results,
shown in Table 4, demonstrate that the DT performs similarly to the
testbed, achieving comparable throughput across all traffic types.
Most notably, the DT replicates the scheduler behavior seen in the
testbed. This is evident in the two-UE experiments with TCP traffic,
where one UE consistently achieves higher throughput in both
uplink (UL) and downlink (DL). This behavior occurs because the
scheduler implementation in the OAI version used for the experi-
ment assigns a minimum of 3 Resource Blocks (RB) for downlink
and 5 RB for uplink. In the DL, 50 RB were available for assignment,
while 45 were available for UL. As a result, one UE consistently re-
ceived 24 RB in the DL and 20 RB in the UL, while the other received
26 RB in the DL and 25 RB in the UL. We verified this behavior
across different bandwidths – 20 MHz (100 RB) and 5 MHz (25 RB) –
and observed the same pattern. One UE consistently received more
RBs due to the scheduler’s minimum RB allocation. Since both the
DT and the testbed run the same scheduler algorithm and, more
importantly, the exact same code, the behavior was identical in both
setups. This is important because it allows large-scale scheduler
testing using the same codebase, ensuring fidelity. Reimplementing
in simulators like ns-3 could introduce inaccuracies, but our DT
avoids this risk.

Furthermore, we compare the fidelity of our design with the
EMANE system [19], which also uses PHY bypass and nFAPI for
RAN-UE communication through amiddlebox called proxy. EMANE
was deployed on an identical setup (three GCP machines, each with
30 cores), albeit with an unmodified OS rather than Hypervisor.
Both emulators used the same version of the OAI RAN and OAI
UE, with their respective middlebox designs. We observe (Table
4) noticable differences between the performance of EMANE and
that of COTS UE and Chronos. Specifically, the throughput is in
all cases lower for EMANE, due to packet losses caused by the
cloud hypervisor preemptions and networking latencies. Indeed,
we observed packet losses of up to 20% for EMANE. For the UDP
uplink two UE case, although EMANE has higher throughput on
one UE, the aggregated throughput on both is lower.

4.2 Scalability

We evaluate the scalability of our design through comparison with
EMANE. The first test used the same deployment as in the fidelity
experiment, and involved attaching UEs to a single base station (BS)
and measuring the percentage of UEs that were able to successfully
establish a data plane connection to the core, as the number of UEs
increased. Figure 5a shows the results. Both systems successfully
attached 40 UEs without any data plane failures. However, starting
from 50 UEs, EMANE began experiencing data plane failures, with
not all of the UEs being able to establish a data plane connection.
In contrast, Chronos achieved 100% data plane connectivity for all
scales of UEs tested.

In Figure 5b, we dig deeper into the underlying issues in EMANE
that prevent the data plane in some UEs from working. Specifically,
we observe an increasing number of PRACH failures, as reported
by the BS, when the number of UEs increases above 30. These
failures were due to timer expirations, not contention (a normal
occurrence in 4G/5G initial attach). Timer expiry failures happened
because messages were not received in the correct slot. In contrast,
Chronos experienced zero PRACH failures for all the scales tested,
and as such is not shown in Figure 5b.

To further test the scalability of our design, we deployedChronos
on machines with higher core counts. We used three 96-core ma-
chines running our modified kernel and Hypervisor, each hosting
one VM with 95 cores. As in previous experiments, we set up a
three-node Kubernetes cluster using these VMs to simplify deploy-
ment. Of the three nodes, the RAN was restricted to two, while the
UEs and Core could run on any machine. For the Switch, we used
a 180-core machine.

In this experiment, our goal was to explore the maximum achiev-
able scale and observe how the time dilation factor changes with
increasing scale. The dilation factor was not manually set – it is a
feature of our design, allowing time dilation to occur in response
to slot processing and network delays. Figure 5c illustrates how the
dilation factor changes as we increase the number of UEs with a
fixed set of base stations (BSs). We began with 10 UEs across 5 BSs
and gradually increased the number to 500. As shown, the dilation
factor rises with the increasing number of UEs, as the Switch must
manage a greater load. In summary, the dilation factor increases
from 2 for 10 UEs to 19 for 500 UEs.

Similarly, Figure 5d shows how the dilation factor changes when
the number of BSs is increased while keeping the UEs fixed at

47



HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA U. Pawar† , A. Ferguson† , Y. Takano† , J. Larrea† , X. Foukas‡ , M. K. Marina† , B. Radunovic‡

500. In this case, we varied the number of BSs from 5 to 250. As
expected, the dilation factor also increases with more BSs; however,
the rate of increase is significantly higher compared to the previous
figure. This is due to the greater computational requirements of
BSs, which run a more complex processing pipeline than the UEs.
In this case the dilation factor went from 19 for 10 BSs to 78 for 250
BSs. In all above tests, the Attach success rate was 100%. During our
testing, we also deployed scenarios with up to 1000 UEs and 250 BSs.
Thanks to the scalability achievable with Chronos, we can deploy
a large number of UEs and BS to test complex real-world scenarios
cost-effectively, which is currently not feasible with alternatives
(hardware or software).

5 Limitations and Future Work

In the POC, the focus was on validating the Chronos design, so
we make some simplifications. For example, we do not incorporate
any channel modeling. However, some effects of the channel can
be simulated using channel models to generate Channel Quality
Indicator (CQI) values for the UEs [14]. Additionally, testing at
larger scales revealed inefficiencies in the implementation of cer-
tain components (particularly the Switch and PHY layer bypass
library), resulting in additional overhead and slower emulation.
Addressing this is planned for future work. Crucially, we intend to
comprehensively evaluate the ability of Chronos to emulate large
city-scale scenarios (thousands of BSs and UEs).

While we argue that the Chronos design is general and appli-
cable to 4G and 5G, the POC presented was 4G-only, due to the
maturity of existing open source RAN software stacks and missing
features like X2 Handover in OAI 5G Stack. Extending the imple-
mentation to 5G is essential to enable Chronos to be used in the
modeling and research of 5G networks, an area (along with other
use cases) that we have significant interest in.

Another limitation of Chronos is its reliance on a specific RAN
software stack. We are in the early stages of exploring how to
separate the different components of Chronos to enable third-
party RANs to be used, including those with different architectures
such as a lack of PHY layer bypass.

Finally, during the evaluation of the POC it became clear that
there is a non-trivial relationship between the complexity of the
scenario being emulated, the amount of time required to emulate
the scenario, and the compute resources required. We intend to
explore this relationship, as we believe a deeper understanding

would reduce the complexity of Chronos, and enable its wider use
in research.

Acknowledgments

We thank our shepherd, Shubham Jain, and the anonymous re-
viewers for their helpful comments and suggestions that greatly
improved this paper. This work was supported by a project funded
by the UK Department for Science, Innovation and Technology
(DSIT).

References

[1] Keysight Propsim. https://www.keysight.com/us/en/products/channel-
emulators/propsim-platforms.html.

[2] Keysight UESIM. https://www.keysight.com/us/en/product/P8800S/uesim-ue-
emulation-ran-solutions.html.

[3] OpenAirInterface. https://openairinterface.org/.
[4] OSNOISE. https://docs.kernel.org/trace/osnoise-tracer.html.
[5] srsRAN Project. https://www.srslte.com/.
[6] Viavi TM500. https://www.viavisolutions.com/en-us/products/tm500-network-

tester.
[7] V. Babu and D. Nicol. Precise virtual time advancement for network emulation.

In Proc. ACM SIGSIM-PADS ’20, pages 175–186, 2020.
[8] P. Bahl, M. Balkwill, X. Foukas, A. Kalia, D. Kim, M. Kotaru, Z. Lai, S. Mehrotra,

B. Radunovic, S. Saroiu, et al. Accelerating Open RAN Research Through an
Enterprise-scale 5G Testbed. In Proc. ACM MobiCom ’23, pages 1–3, 2023.

[9] J. Breen et al. Powder: Platform for Open Wireless Data-driven Experimental
Research. Computer Networks, 197:108281, 2021.

[10] S. C. Forum. FAPI specifications. https://www.smallcellforum.org/work-items/
fapi.

[11] X. Foukas and B. Radunovic. Concordia: Teaching the 5G vRAN to share compute.
In Proc. ACM SIGCOMM ’21, pages 580–596, 2021.

[12] U. Ghosh, I. K. Jain, D. Bharadia, and S. Shakkottai. Poster: Tiny-twin: A Light-
weight and Verifiable Digital Twin for NextG Cellular Networks. In Proc. ACM
HOTMOBILE ’24, pages 145–145, 2024.

[13] T. Henderson,M. Lacage, G. F. Riley, C. Bèrnier, and S. Floyd. Network Simulations
with the ns-3 Simulator. In Proc. ACM SIGCOMM ’08, 2008.

[14] W.-H. Ko, U. Ghosh, U. Dinesha, R. Wu, S. Shakkottai, and D. Bharadia. EdgeRIC:
Empowering real-time intelligent optimization and control in NextG cellular
networks. In 21st USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 24), pages 1315–1330, Santa Clara, CA, Apr. 2024. USENIX
Association.

[15] A. Masaracchia, V. Sharma, M. Fahim, O. A. Dobre, and T. Q. Duong. Digital
Twin for Open RAN: Toward Intelligent and Resilient 6G Radio Access Networks.
IEEE Communications Magazine, 61(11):112–118, 2023.

[16] H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula. Digital Twin for 5G and
Beyond. IEEE Communications Magazine, 59(2):10–15, 2021.

[17] O-RAN next Generation Research Group. Research Report on Digital Twin RAN
Use Cases. Technical report, O-RAN, May 2024.

[18] M. Polese et al. Colosseum: The Open RAN Digital Twin. arXiv preprint
arXiv:2404.17317, 2024.

[19] B. Ryu, R. Knopp, M. Elkadi, D. Kim, and A. Le. 5G-EMANE: Scalable Open-
Source Real-Time 5G New Radio Network Emulator with EMANE. In Proc. IEEE
MILCOM 2022, pages 553–558. IEEE, 2022.

48

https://www.keysight.com/us/en/products/channel-emulators/propsim-platforms.html
https://www.keysight.com/us/en/products/channel-emulators/propsim-platforms.html
https://www.keysight.com/us/en/product/P8800S/uesim-ue-emulation-ran-solutions.html
https://www.keysight.com/us/en/product/P8800S/uesim-ue-emulation-ran-solutions.html
https://openairinterface.org/
https://docs.kernel.org/trace/osnoise-tracer.html
https://www.srslte.com/
https://www.viavisolutions.com/en-us/products/tm500-network-tester
https://www.viavisolutions.com/en-us/products/tm500-network-tester
https://www.smallcellforum.org/work-items/fapi
https://www.smallcellforum.org/work-items/fapi

	Abstract
	1 Introduction
	2 Challenges of large scale RAN emulation in the public cloud
	3 Chronos System Overview
	3.1 Approach and System Architecture
	3.2 POC Implementation

	4 Preliminary Evaluation
	4.1 Fidelity
	4.2 Scalability

	5 Limitations and Future Work
	References

