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Abstract—Mixing time is a global property of a network that
indicates how fast a random walk gains independence from its
starting point. Mixing time is an essential parameter for many
distributed algorithms, but especially those based on gossip. We
design, implement, and evaluate a distributed protocol to measure
mixing time. The protocol extends an existing algorithm that
models the diffusion of information seen from each node in
the network as the impulse response of a particular dynamic
system. In its original formulation, the algorithm was susceptible
to topology changes (or “churn”) and was evaluated only in
simulation. Here we present a concrete implementation of an
enhanced version of the algorithm that exploits multiple parallel
runs to obtain a robust measurement, and evaluate it using a
network testbed (Emulab) in combination with a peer-to-peer
system (FreePastry) to assess both its performance and its ability
to deal with network churn.

I. INTRODUCTION

The performance of distributed algorithms often depends on
global properties of the network, where the term “network”
here refers broadly to a generic interconnection of computa-
tional nodes, including wide-area networks, data-center net-
works, ad hoc networks, and many kinds of overlay networks.
One of these critically important properties is the mixing time
of the network, a global property that indicates how fast a
random walk gains independence from its starting point [1].

Gossip algorithms and decentralized measurement algo-
rithms, which are used for such things as sampling or for
computing aggregate node metrics, perform better on fast-
mixing networks than on slow-mixing networks. Mixing time
can also play a role in security and privacy: botnet peer-
to-peer overlays tend to be fast mixers, which allows their
presence to be distinguished from the underlying network’s
background traffic [7]; in social networks, honest friends
tend to exhibit fast mixing times, whereas the presence of
malicious users perpetrating a Sybil attack through multiple
fake identities tend to slow the mixing time of the network [9].
It is therefore useful to have an effective and efficient general-
purpose facility to measure mixing time.

With full knowledge of the network graph, it is possible
to measure the mixing time exactly and with a simple local
computation. In particular, the mixing time can be computed
from the second largest eigenvalue of the adjacency matrix
of the network graph. However, such global knowledge is
expensive to obtain and maintain in precisely the cases where
distributed algorithms are most useful. We therefore propose a

mechanism that provides a good estimate of the mixing time
in a decentralized and efficient manner.

The mechanism we propose is based on a recent spectral es-
timation algorithm due to Carzaniga, Hall, and Papalini [2]. In
essence, their algorithm computes a surrogate of the adjacency
matrix using minimal state and limited local communications,
and then uses the largest eigenvalues of the surrogate matrix
as an estimate of the global matrix. However, the accuracy
of their algorithm is negatively affected by changes in the
network, or “churn” events. Furthermore, their algorithm has
been evaluated only in simulation.

We make the following novel contributions. First, we extend
the basic scheme introduced by Carzaniga, Hall, and Papalini
to provide a churn-resilient mixing-time measurement service.
At a high-level, our idea is to combine parallel, independent
estimates that would individually be susceptible to the same
churn events, but in different ways, collectively resulting in
a more accurate estimate. Second, we design and develop a
protocol that can be used to realize the service. Third, we give
a paradigmatic implementation of this protocol for use with a
peer-to-peer overlay network, FreePastry.1

We evaluate our design and implementation on the Emulab
network testbed, obtaining three important results. First, we
confirm the basic simulation results of Carzaniga, Hall, and
Papalini in a concrete implementation on an emulated network.
Second, we validate the extensions to the scheme, showing that
it achieves good estimates even in the presence of churn. Third,
we demonstrate the service by applying it in the well-known
distributed measurement algorithm push-sum [4].

II. BACKGROUND

We consider a general, multi-hop network in which each
node connects to a set of neighbors. This set may be more or
less stable, a node may or may not maintain direct network
connections to its neighbors (i.e., nodes may be neighbors in
an overlay), and those direct connections may be uni- or bi-
directional. Thus, we model the network as a generic directed
graph that can represent static networks or highly dynamic
networks such as peer-to-peer systems. Our only assumption
about the network graph is that it is ergodic. This is reasonable,
since all connected networks of practical interest (other than,
say, a bipartite network) are ergodic.

1http://www.freepastry.org/



Given this model, we consider the problem of measuring
the mixing time, which is essentially a metric for how quickly
a random propagation of information stabilizes throughout
a network. A bit more formally, and to better define our
objective, we consider the case of a random walk. Since the
network is ergodic, the probability xv(t) that a random walk
visits a node v at hop t, as t approaches infinity, converges
to a value πv independently of the starting node of the walk.
The vector of probabilities π is called the asymptotic (steady
state) distribution of the walk. In this case, given a distance
ε, the mixing time τε is the minimal number of hops after
which the visiting probabilities x(t > τε) approximate the
asymptotic distribution π by at most ε. The mixing time thus
depends on the structure of the network and of the random
walk. Specifically, the mixing time can be computed from the
second largest eigenvalue of the transition matrix of the walk
A = (auv), where auv is the probability that a walk would
hop from node v to node u (and, therefore, auv > 0 only
when there is an edge from v to u in the network graph).

The structure of random walks is representative of several
randomized gossip algorithms [1] whose performance depends
on the second largest eigenvalue of a characteristic matrix
defined by the algorithm and related to the adjacency matrix of
the network graph. We therefore consider a network system or
algorithm A in which each node v defines a column of weights
(a·v), associated with v’s outgoing edges, that collectively
define the characteristic matrix A = (auv).

Our goal, then, is to provide a decentralized and efficient
mechanism to measure the second largest eigenvalue of A.

A. Spectral Estimation

The spectral analysis of graphs has many interesting appli-
cations. The best-known example is probably the PageRank
algorithm, but there are also applications in the field of
networking with corresponding algorithms to compute the
spectral properties of a network in a decentralized manner. For
example, EigenTrust [3] is a reputation management algorithm
for peer-to-peer networks that computes the principal eigen-
vector of a matrix containing trust values of the nodes using a
distributed power method. Kempe and McSherry [5] propose
a generic and decentralized algorithm to compute the principal
eigenvectors of a symmetric weighted adjacency matrix of
the network. Notice, however, that all these algorithms com-
pute the top eigenvectors, which contain more information,
and require significantly more memory and communication
resources, than what we need for the estimation of the mixing
time.

We build upon a simpler spectral estimation algorithm
developed by Carzaniga, Hall, and Papalini [2] that computes
the top eigenvalues of the adjacency matrix of the network.
The algorithm views the network as a dynamic system defined
by the following state-space equations:

x(t+ 1) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) (2)

This is a discrete-time, linear, time-invariant, single-input,
single-output, deterministic system. That is, the state of the
system x(t) ∈ Rn evolves in steps t = 1, 2, . . . (discrete
time) through a transformation defined by a matrix A ∈ Rn×n

(linear) that is immutable over time (time invariant). The
system is stimulated by a scalar input signal u(t) ∈ R (single
input) that feeds into the state through a vector B ∈ Rn, and
produces a scalar output signal y(t) ∈ R (single output) as a
linear combination of the state, with coefficients C ∈ Rn. The
system is not subject to error signals (deterministic).

We denote by h(t), for t = 1, 2, . . ., the impulse response of
the system starting from the quiescent state x(0) = 0. Thus,
h(t) is the output of the system when the input is the unit
impulse (u(0) = 1 and u(t) = 0 for t > 0).

The estimation can be thought of as a synchronous dis-
tributed algorithm in which each node v holds a scalar value
xv(t) corresponding to a component of the state of a dynamic
system, and executes the following steps:
1) Initialization: v initializes its state variable xv to either 0

or 1, chosen uniformly at random, and then records the
initial value hv(1)← xv .

2) Distributed computation of the impulse response: for k−1
rounds t ← 2 . . . k, v sends value wu = xvauv to each
out-neighbor u, updates its state xv ←

∑
wv with the

sum of all values wv received from its in-neighbors, and
then records each new value hv(t) ← xv . Effectively, v
computes k values of the impulse response hv(t) of a
system x(t+ 1) = Ax(t) + Bu(t); y(t) = Cvx(t), where
A is the matrix of system A, B corresponds to the global
state of the system initialized in step 1, and Cv is a row
vector of all zeroes except for a 1 in position v.

3) Realization of a surrogate system: v uses hv(t) with Kung’s
algorithm [6] to compute a matrix Âv that defines an
approximate realization of the system.

4) Eigenvalues of the surrogate system: v computes the second
largest eigenvalue λ̂v of Âv using a standard numeric
algorithm.

5) Neighborhood gossip round: v exchanges its estimate λ̂v
with its neighbors and uses the median value λ of its esti-
mate plus all the estimates it receives from its neighbors.

B. Advantages and Limitations

Notice that the algorithm is completely decentralized: node
v holds the column (a·v) of the original matrix A, which
corresponds to v’s local view of the whole system A, but
v does not know the rest of A. And yet v can compute an
estimate λ that, as it turns out, approximates very well the
second largest eigenvalue of the actual (global) matrix A.
Notice also that each node v uses k � n rounds of local
communication for a network of size n. In other words, the
Carzaniga, Hall, and Papalini algorithm is quite efficient and
precise.

The flaw in this algorithm, however, is that it assumes the
global matrix A remains unchanged during the k rounds of
the computation of the impulse response. This means that
the algorithm does not account for the practical problem of



network churn. Churn events, particularly a node leaving the
network, effectively change the matrix A, negatively impacting
the quality of the estimation. We elaborate on this flaw, and
discuss how we address it, in the next section.

III. COMPENSATING FOR NETWORK CHURN

Carzaniga, Hall, and Papalini observed the significant inac-
curacy of their algorithm in the presence of network churn,
but offered no solution to this problem [2]. Experimentally,
we observe (Section VI) that churn events are particularly
disruptive when they occur close to the end of the computation
of the impulse response. This is intuitive, since a change
during the early rounds of the computation would likely result
in a spectral estimation that contains enough information about
the new topology to wash out the effects of the change,
whereas a change during the later rounds might not be fully
observed from some locations in the network, resulting in
poor local estimates at those locations based on outdated
matrices. Obviously, the uncertainty that churn introduces to
the accuracy of the estimate greatly hinders the usefulness of
a measurement service in realistic settings.

A simplistic way to approach the challenge of network
churn would be to assume the availability of a global “sanity
check” based on some external knowledge of the network’s
properties that would indicate whether or not a given estimate
is acceptable. If the estimate turned out to be bad, the whole
process could be repeated. However, introducing such an
oracle amounts to assuming that a churn event does not
violate those network properties and/or making conservative
judgements on the viability of the estimate. The latter, in par-
ticular, implies possibly unnecessary, sequential re-executions
of the algorithm, thereby leading to wasted network traffic
and excessive delays in obtaining a result; such delays would
also result from simply requiring that each execution always
consists conservatively of a large number of rounds. None
of these approaches is practical in realistic networks of any
reasonable scale.

Our approach, instead, is to take advantage of the fact
that otherwise inaccurate estimates might still spread some
useful information through the network. Further, we make
use of multiple measurement runs, but execute them roughly
in parallel rather than sequentially, and combine them to
produce a superior result. We refer to an execution of the
basic spectral estimation algorithm as a line and illustrate
its use in Figure 1. Each of the three horizontal bars in the
figure represents one line, initiated at three different times and
formed from a series of rounds, ending with the computation
of an estimate as described in Section II. The shaded rounds
contribute to the impulse response computation and, therefore,
heavily influence the accuracy of the mixing-time estimate.
A light shade indicates that the round contributes to a good
estimate, whereas a dark shade indicates the opposite.

At some point in this example, a churn event occurs (e.g., a
failure in the network or the appearance of a new peer node),
resulting in a change to the network topology. In the case of
the first line, the event occurs late in the line and, therefore,

Fig. 1: Execution of l = 3 parallel, partially overlapping lines,
each consisting of a total of 16 rounds (k = 15).

there is no time for it to acknowledge the effect of the event,
thereby resulting in a bad estimate. The other two lines, while
affected by the event, nevertheless manage to recover before
terminating and result in a good estimate.

But the question remains, how can we know which of the
estimates produced by the individual lines is acceptable? The
answer is to compare their results using, for example, an
approximate voting scheme. This would reveal the presence
of an inconsistency, if it existed, effectively serving as a kind
of distributed failure detector for the measurement facility
(and, likewise, a detector of churn events). Moreover, it could
reveal whether the effects of a churn event had eventually been
overcome.

Our main idea is therefore to compensate for network churn
by computing a series of partially (but not completely) over-
lapping impulse responses. This way, if a churn event occurs, a
few of the impulse responses—those that terminate right after
the churn event—might result in a faulty measurement, but the
majority of them probabilistically will be accurate enough to
obtain a good estimate. It should be noted that this idea does
not always guarantee the accuracy of the final estimate, but as
the experiments in Section VI demonstrate, it can be effective
in many cases.

The tuning parameters of our approach involve the number
of parallel instances and their length in rounds. Moreover, we
must invent a means to manage the parallel instances and
merge their results. We discuss the design of a distributed
protocol for realizing the mixing-time measurement service in
the next section.

IV. PROTOCOL

Our protocol defines the local state maintained by each node
in the network, and the messages exchanged to evolve and
share that state among the nodes. The protocol builds upon
the spectral estimation algorithm described in Section II-A as
extended above to compensate for churn.



A. General Design

We refer to the process of obtaining a measurement of the
network’s mixing time, including all the actions taking place
from when a service request is made until the measurement ac-
tually becomes available, as a session. A session is composed
of l lines (i.e., instances of the spectral estimation algorithm)
that execute in parallel and are initiated at different points in
time so as to only partially overlap. Each line consists of k+1
rounds (k rounds for steps 1 and 2 of the algorithm plus 1 for
the gossip round of step 5). Both l and k serve as session
parameters. The total number of rounds in a session, from the
initiation of the first line to the termination of the last line,
is denoted by r, and since lines partially overlap, it follows
that r < l(k + 1).

Lines are staggered and evenly spread within a session,
separated by a fixed interval of bk/lc rounds. This leads to
a session length of r = (l−1)bk/lc+k+1 rounds. Using the
example of Figure 1, we can see that for l = 3 and k = 15
a new line is introduced every 5 rounds (rounds 1, 6 and 11)
and hence r is 26.

Each line is composed of three phases: Initialization, Im-
pulse Response Computation, and Gossip Round, derived from
the steps in the spectral estimation algorithm. The Initialization
phase is composed of two rounds (corresponding to step 1 and
the first round of step 2). In the first (local) round, each node
v chooses a value xv(1) uniformly at random and sets it as
its initial impulse response, hv(1). Then for the second round,
it sends the value xv(1)auv to all its out-neighbors u, and
gathers the corresponding values sent by adjacent nodes. The
sum xv(2) of the received values is then computed and is set
as the second impulse response, hv(2).

For each round i = 3..k in the Impulse Response Com-
putation phase (corresponding to the remaining rounds of
step 2), each node v sends the value xv(i− 1)auv to its out-
neighbors and waits to receive the corresponding values of
its in-neighbors u. It uses the received values to compute the
new impulse response as the sum of those values. Once this
phase terminates, the impulse responses gathered are used to
produce an estimate of the network’s properties (steps 3 and 4
of the algorithm).

The estimate for each line at each node is obtained through
a simple Gossip Round (step 5), in which neighbors exchange
their estimates and then take the median of those estimates as
the line’s estimate.

Our protocol adds one additional step, also performed
locally at each node. This step, the Vote, takes advantage of
the multiple lines within a session to compute a median value
representing the consensus among the lines. This value is then
the final measurement reported locally from a node back to
the hosted entity that issued the service request.

B. Protocol Messages

A session is initiated when a service request, containing the
desired number of lines l and number of rounds k for each
line, is made to one of the network’s nodes. The initiator,
the node that receives the service request, configures a new

session based on the two parameters, assigns the session a
unique ID, and sets the first line to its Initialization phase. In
an epidemic fashion, the initiator then sends a message of type
INIT to all of its out-neighbors, containing the information
required for them to locally initiate (i.e., participate in) the
new session. The essential contents of the INIT message are
shown in Figure 2. Each node receiving the INIT message
performs the same set of actions as the initiator, until all the
nodes are aware of the new session, using the session ID as a
“mark” to terminate the process.

INIT
session ID

total lines (l)
line number

rounds in line (k)
wu = xv(1)auv

NEXT
session ID
line number

round number (i)
wu = xv(i− 1)auv

GOSSIP
session ID
line number

estimate (λ̂v)

Fig. 2: Protocol messages and their contents.

The INIT message is used not only to establish new sessions
but also new lines within a session. When the time comes for a
new line to be created, the initiator, as before, sets the new line
to its Initialization phase and sends INIT messages to its out-
neighbors using the same session ID, but with an incremented
line number. If a node receives an INIT message bearing a
known session ID, but an unknown line number, a new line is
created locally within the context of that session. The process
continues epidemically. Note, however, that a node will not
participate in the current session if it joins the network any
time after the Initialization phase of the first line completes.
This is not a problem, since the presence of the node will be
accounted for in a subsequent session.

During the Impulse Response Computation phase, a series
of NEXT messages carry the values used to compute the
next impulse response to out-neighbors, along with context
information for the session, line number, and round. Similarly,
GOSSIP messages are used in the Gossip Round to transport
a list of computed eigenvalues to out-neighbors.

Therefore, the total number of messages exchanged in
a network with m edges is ml(k + 1). In practice, this
communication overhead could be greatly reduced, first by
multiplexing the values of different rounds and lines within
a session onto a single message, and further, since messages
are very short, by attaching protocol messages as “piggyback”
onto regular traffic.

C. Discovering and Managing In-Neighbors
One critical aspect of the spectral estimation algorithm is

an assumed knowledge of the in-neighbor set. In particular,
each node needs to know the number of expected incoming
values in each round so that it can terminate that round and
proceed to the next one. In practice, peer-to-peer and other
distributed systems typically do not require nor record such
information. Moreover, we do not wish to limit our service
to work only for networks having bi-directional channels.
Therefore, discovering and maintaining a list of in-neighbors
becomes an integral protocol function for our purpose.



Under our protocol, a node discovers its in-neighbors for
each line individually within a session during the Initialization
phase. During this phase, each node chooses a value uniformly
at random as its initial impulse response and sends an INIT
message to its out-neighbors. Since each node receiving an
INIT message for a new session with a particular ID will in
turn epidemically send INIT messages to all its out-neighbors,
the node will eventually receive corresponding INIT messages
echoed back from all its in-neighbors.

Pragmatically, we need to use a timeout in order to locally
terminate the discovery process for a node, since we do not
assume global knowledge such as the network diameter. While
this cannot guarantee that all in-neighbors will be discovered
(e.g., due to delayed INIT messages), we must assume that a
reasonable timer value can be found to yield a probabilistically
accurate record of the in-neighbor set for a large portion of
the network without unduly compromising performance.

We have another pragmatic need for timers in our design,
namely to avoid deadlocks under failure. A deadlock can occur
when a message needs to be received from some in-neighbor
present during the Initialization phase, but in a failed state
at some later round. To overcome this we employ a simple
failure detector in which each node in the set is assigned
a timer representing its liveness. Every time a message is
received from a given in-neighbor, the corresponding timer
value is reset. If a timeout occurs, the in-neighbor is probed
for liveness. If the node responds to the probe, its timer is reset.
Otherwise, the node is removed from the list of in-neighbors.

V. IMPLEMENTATION

We implemented our protocol in the form of a Java library.2

The library is intended to be used in conjunction with any
peer-to-peer overlay network (Figure 3).

The library provides applications with a service to mea-
sure the mixing time of the peer-to-peer network through a
dedicated API, just like any other function of the peer-to-
peer system. Internally, the library obtains local connectivity
information from the peer-to-peer system and then uses the IP
network directly for communication. In some cases, it might
be preferable to delegate all communication to the peer-to-peer
system, for example to exploit proxy mechanisms or already
established connections into private networks, and the library
can be easily modified to do that.

We designed the library to be portable to a variety of peer-
to-peer systems. In particular, we modularized the interface
to the underlying peer-to-peer system through an Integration
Layer that wraps the peer-to-peer system and hides its pe-
culiarities from the implementation of the protocol’s Control
Layer. In essence, the Integration Layer is responsible for
obtaining the local node ID and the set of out-neighbors, as
well as for manipulating this set to remove failed neighbors.
To support a new type of overlay network, one must only
write the specific code to obtain this information from the new
overlay, and present this information through the following
simple Node interface.

2http://www.inf.usi.ch/carzaniga/p2pimpulse/

Fig. 3: Implementation architecture.

1 public interface Node {
2 Id getLocalId();
3 Set<Neighbor> getOutNeighbors();
4 boolean removeOutNeighborNode(Id nodeId);
5 }

Our library currently provides implementations of the interface
for both Pastry1 and Chord.3

The Control Layer is responsible for implementing and
coordinating the high-level protocol services, and consists
of four components, as depicted in Figure 3. Most of the
functionality is within the Protocol Core component, which is
responsible for managing running sessions and their respective
lines, as well as for managing their state. This state includes
the phase they are in, when to advance to the next round,
whether a line or a whole session should terminate, and
the like. The Protocol Core also handles incoming protocol
messages, deciding which impulse should be added to which
line and whether a new message containing an impulse should
be shared with the node’s out-neighbors. Yet another important
role of this component is to run periodic maintenance tasks,
such as discovering in-neighbors, maintaining the sets of in-
and out-neighbors, and deciding whether to probe a remote
node for liveness, as described in Section IV-C. These oper-
ations are performed by multiple threads running in parallel,
each assigned to a different task.

The Communications component is responsible for the
actual transmission and dispatching of protocol messages. The
Protocol Core generates the required messages and then passes

3http://sourceforge.net/projects/chordless/



them to the Communications component, which transmits
them asynchronously. Similarly, for incoming messages, the
Communications component receives and dispatches messages
to the Protocol Core. The design of the protocol messages
(Figure 2) and of the Communications component allows
for the multiplexing/demultiplexing of messages belonging to
different lines or different rounds within the same session.

The Control Layer handles the state of, and computations
associated with, the estimation service through the Storage
and Algorithms & Analysis components, respectively. The Al-
gorithms & Analysis component is responsible for performing
all the algorithmic operations required by the protocol (Kung’s
algorithm, eigenvalue computation, etc.). It is built on jblas, a
linear-algebra library for Java that is itself based on the well-
known BLAS and LAPACK libraries. The storage component
uses a simple key/value database for network measurements.

Under our protocol, it is possible to have multiple sessions
active simultaneously, initiated by different nodes originating
from different service requests. However, the measurements
provided by them would likely be quite similar and, therefore,
the additional sessions would lead to increased network traffic
without increased information.

In order to reduce unproductive traffic, the Control Layer
makes use of a cache to store previous measurements. When
a new service request is made, it checks whether a session is
currently active. If no session is active, the cache is consulted
for recent measurements and a new session created only if the
stored values exceed some request-specific age threshold. On
the other hand, if a session is currently active, then the entity
issuing the service request can ask to wait for the output of
that session or insist that a new session be initiated.

VI. EVALUATION

We now present the results of experiments to evaluate
our mixing-time measurement service. The experiments are
conducted using the Pastry overlay network deployed on
the Emulab and PlanetLab network testbeds. We start by
examining the case of an ideal network with no churn, where
we validate the simulation results obtained by Carzaniga, Hall,
and Papalini [2]. We then study the effects of churn on the
estimated spectral values, and in particular the resiliency of
our estimation for different protocol configurations. Finally, we
demonstrate how the protocol could be used by a real appli-
cation to provide some useful network-related measurements.
In particular, we present an application based on the push-
sum algorithm [4] operating on top of the Pastry overlay to
compute the average number of files stored in the constituent
nodes of the network.

A. Experimental Setup

To conduct our experimental study we developed an im-
plementation of the generic Node interface for FreePastry,
an open-source implementation of Pastry. FreePastry satisfies
the requirements of the spectral estimation algorithm, since
it builds and maintains a strongly connected and ergodic
network, and also because, with minor changes to the source

code, it provides the local connectivity of each node required
by the protocol (i.e., the list of out-neighbors). The topology
of the Pastry overlay is also very similar to that of Chord,
which is what Carzaniga, Hall, and Papalini used in their
simulations [2].

We deployed the combined stack of our measurement ser-
vice and FreePastry on two network testbeds, PlanetLab and
Emulab. PlanetLab is a large research network spanning the
world and running over the open Internet, which makes it a
realistic testbed. On the other hand, this same realism may be
limiting, in the sense that it is difficult, if not impossible, to
conduct an experiment under controlled conditions. Therefore,
we also deployed and tested the service on Emulab, which
is a rack-based network testbed that allows the execution of
repeatable experiments under controlled conditions. As it turns
out, we obtain very similar and consistent results on both
testbeds in all our experiments, so we report here only the
specific results obtained on Emulab.

We conduct all the experiments on a peer-to-peer system of
100 nodes. In the case of Emulab we configure the network
using a “big switch” topology with all links having a latency
of 200ms. In the case of PlanetLab, we select nodes at random,
obtaining the natural variability of levels of service (latency,
bandwidth, and memory) offered by the testbed. Notice that
we did not choose to select only highly performing nodes,
which is an option of PlanetLab.

To replicate the results of Carzaniga, Hall, and Papalini,
we measure both the spectral gap and the mixing time of the
network. In particular, to compare the measurements provided
by the service to the actual properties of the network, we also
implemented an “all knowing” evaluator node to which every
node in the network sends their local connectivity information.
We then use the global properties computed (locally) by the
evaluator node as the ground truth in the evaluation.

B. Validation of Simulation Results

In the first experiment we evaluate the accuracy of the
estimation in the absence of churn by measuring the percent
error in the mixing time and the spectral gap estimates. For this
experiment we configure the protocol with sessions composed
of a single line, since multiple lines would not change the
results in any way without churn. We run multiple sessions
with different numbers of rounds k = 1 . . . 60. Figure 4
displays the results. In particular, Figure 4a shows the spectral-
gap error and Figure 4b the mixing-time error for the 10th,
50th, and 90th percentile of the values estimated by all the
nodes in the network. The inner plot in the upper right corner
of each graph focuses on the results for k = 35 up to k = 60.

We observe that, while the error can be quite high with
only a few rounds, the accuracy of the estimate improves
very quickly as the number of rounds increases. This is in
accordance with the findings of Carzaniga, Hall, and Papalini.
One noticeable difference is that the error drops faster in
our experiments than in theirs. However, this too is to be
expected, since we use a much smaller network (100 nodes
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Fig. 4: Estimation error in the absence of churn.

in our real deployment versus 10000 in their simulation). We
also observe that, although the error vanishes (see close-up
graphs), the estimate is never completely accurate. We do not
try to explain these small fluctuations, which might be related
to numerical imprecision or other aspects of the estimation
algorithm, including perhaps the variability in the initialization
and in what is observable by each node in the network.

C. Resilience to Churn

Carzaniga, Hall, and Papalini measured the accuracy of the
estimation in the presence of churn by introducing a single
node failure in different rounds throughout the execution of
their algorithm. As a result, they found that the errors in
both the spectral gap and the mixing time could be as high
as 200%, even for executions of the algorithm with several
rounds. Moreover, the later the failure was introduced, the
more the estimates diverged. As we did for the case of an
ideal network, we validate these simulation results in our real
deployments using sessions consisting of a single line (same
case as the original estimation algorithm). Figures 5a and 5b
present these results for the spectral gap and the mixing time,
respectively. (These figures are best viewed in color.)

For this experiment we set the number of rounds to a range
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(b) Mixing time error

Fig. 5: Spectral gap and mixing time estimation error for a
session with a single line.

of k = 1 . . . 40 and we plot a heat map in which the X-axis
indicates the number of rounds, the Y-axis indicates the round
in which the churn event occurs, and the heat color represents
the median percent error of the estimate. The brighter the color
of a point, the higher the percent error of the estimate.

We observe a number of features in both heat maps. First,
we observe that the left sides of the maps are characterized
by a lighter vertical band. This indicates that no matter where
the churn event occurs, the accuracy is low for low values
of k, which once again is to be expected, as shown in
Section VI-B. Second, we observe a higher percent error close
to the diagonal. This means that the estimates are inaccurate
when a churn event occurs close to the end of the computation
of the impulse response. Once more, this is in accordance
with the original simulation results, with the only difference
being that the percent error seems to be higher in the worst
case for our implementation as compared to their simulated
algorithm. We speculate that this inconsistency might be due
to the slight difference between the FreePastry network used
in our deployment and the Chord topology used in their



simulation. Third, we observe that churn events are more
disruptive when they occur at the end of longer lines. This
is also consistent with the simulation results and with our
intuition that using multiple parallel runs can help to wash
out erroneous estimates.

Having evaluated the accuracy of the estimation under
churn with sessions consisting of just one line, we now turn
to the more interesting case of multiple lines. Figures 6a
and 6b present this case. We use the same parameters of
Figure 5, except that now we use sessions of l = 5 lines,
and again display the results using heat maps. However, notice
two differences. First, the Y-axis extends to 72 rounds. This
is because, while each line has the same length as in the
experiments of Figure 5 (with k = 1 . . . 40), now the length
of the whole session is r = 72 and, therefore, we study the
impact of a churn event occurring at any point in the session.
Second, the X-axis begins from k = 5 instead of k = 1.
This is due to the way the partially overlapping lines are
introduced, as explained in Section IV. With l = 5 lines and
with k < 5 rounds in each line, there would be multiple lines
completely overlapping and giving exactly the same results.
In other words, the configurations in which k < l amount to
degenerate cases that we do not consider.

The results of Figure 6 demonstrate the resiliency provided
by our enhanced approach, exhibiting a significant reduction
in the percent error compared to the corresponding results of
Figure 5, except for very low values of k. Notice also that, in
order to make the error visible, we adjusted the “heat” scale.
So, considering the mixing time, for example, the brightest
color with l = 1 line per session (Figure 5b) indicates an
error of 700%, while the same color in the case with l = 5
lines (Figure 6b) indicates an error of only 140%.

Once again we observe the bright vertical band on the left
side of the map that indicates poor estimates for low values of
k, as expected. We also notice that the error is most noticeable
along the diagonal (which is lower, due to the different scales
of the X and Y axes) similarly to the one-line experiments.
However, the interpretation of this error is quite different.
Here the diagonal corresponds to occurrences of churn events
that affect most of the lines in a session, and therefore that
lead to higher overall errors. Fortunately, however, this error
vanishes for higher values of k. In essence, this is because the
worst-case overall estimate corresponds to the estimate of the
middle line, since all lines are affected, but earlier lines will
be affected more and newer lines will be affected less. In other
words, the overall estimate is never worse than the estimate of
a line that is hit by a churn event near its k/2 round, and this
estimate always improves with more rounds (i.e., higher k).

We conclude that using multiple, partially overlapping lines
can be an effective approach to increasing the accuracy of the
estimation in the presence of churn.

D. Demonstration

In this last part of the evaluation we demonstrate our service
in a realistic setting by using it in support of a sampling
application that computes the average number of files stored
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Fig. 6: Spectral gap and mixing time estimation error for a
session with five lines.

in the nodes of a peer-to-peer network. We implemented this
application on top of the FreePastry overlay, and deployed it
over 100 nodes on the Emulab testbed.

Our sampling application implements the push-sum dis-
tributed gossip algorithm [4]. In essence, push-sum assumes
that each node holds an estimate of the average, plus its
weight. Initially the estimate is the number of files stored in the
node and the weight is one. Then, for a number of rounds, each
node chooses one of its neighbors uniformly at random, sends
the information it currently holds, and then updates its current
average and weight according to the information it receives
from others. The idea is that after the algorithm terminates,
the information of all the participating nodes will have been
diffused across the network and, therefore, each node will have
an accurate (and consistent) estimate of the average value.

One practical issue in implementing and configuring this
algorithm is how to choose an appropriate number of rounds,
since that has a fundamental effect on cost and precision.
A small number of rounds will lead to inaccurate results,
while a large number of rounds will result in an unnecessary
increase of network traffic. One typical approach is to set



the number of rounds to a value approximate to the upper
bound O(log n − log ε − log δ), where n is the number of
nodes, ε < 1 is the relative error in the approximation of
the average, and 1− δ is the desired probability of obtaining
such an approximation [4]. As it turns out, this heuristic
approach usually yields a good estimate of the average. For our
implementation we used a similar approach [8], but also takes
into consideration the mixing time τmix , setting the number of
rounds based on the alternative upper bound O(log n+ τmix ).

We implemented our application to use periodic estimates
of the mixing time τmix provided by our measurement service.
For the second parameter n (the size of the network) we exploit
a particular property of Pastry, namely that the size of the
routing table held by each node is O(log n). Therefore, we
use the size of this table as a direct approximation for log n.
Concretely, we set the number of rounds for executing the
push-sum algorithm to the size of the Pastry routing table plus
the estimated τmix . In the particular setting we used, for 100
nodes, this results in 78 push-sum rounds.

To evaluate the effectiveness of our mixing-time measure-
ment service, we collect the average values computed by
push-sum throughout its execution, which we compare to the
actual average (known to us, since we set up the experiment).
Figure 7 shows the result. We plot the percent error of the
target metric computed by push-sum (average number of files)
as a function of the number of push-sum rounds. We plot the
mean error, showing the minimum and maximum errors over
all the values computed by the nodes in the network.
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Fig. 7: Mean error in average number of files per node.

As we can see from the plot, while the average error is
minimized quickly (at about 20 rounds), the maximum error
requires more rounds to drop. This means that there are some
nodes that converge later. However, in the final round, the
average and the maximum error have a difference of less than
0.2%, meaning that almost all nodes converge to an accurate
measurement.

We conclude that the mixing time provided by our mea-
surement service can help to better tune push-sum to obtain
the desired result.

VII. CONCLUSION

For some distributed algorithms, especially gossip algo-
rithms, it is important to know whether or not they are
running on a fast-mixing network. In particular, the mixing
time often serves as a crucial performance parameter. For other
algorithms, such as in the setting of security and privacy, the
ability to uncover the mixing time of a network can itself serve
as a key piece of valuable information.

Unfortunately, mixing time is a global property that cannot
be immediately derived from the local information available to
any single node in the network. On the other hand, the mixing
time can be estimated with an efficient distributed algorithm.
We extended and improved a recent and otherwise successful
algorithm by making it resilient to network churn. We also
designed and developed the first concrete implementation of
the algorithm, providing it as a general, network-agnostic
utility library. Our evaluation demonstrates that the design is
robust, providing results with high accuracy.

One way to build upon our work would be to make the
service resilient also to byzantine behavior. While it would be
easy to discard forged or corrupt messages, it would be more
interesting to defend against the faulty or malicious behavior
of legitimate nodes. Ideally this would be an inherent stability
property of the service. At a more practical level, it would
be interesting to extend and engineer the implementation to
support a wider range of applications and networks.
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